Análisis de escenarios sobre las elecciones europeas de 2024 (ECIS3460)

Documentación técnica de la estimación electoral

Cómo citar este documento: Alaminos, A., y Alaminos-Fernández, A. F. (2024). *Estudio ECIS3460 sobre las elecciones europeas de 2024. Documentación técnica de la estimación electoral.* Centro de Investigaciones Sociológicas. Madrid.

Contenido

Documentación técnica de la estimación electoral	1
Claves de lectura	6
Modelo Bifactorial Inercia Incertidumbre	8
2. Análisis distribucional de los escenarios	11
3. Análisis de los componentes de inercia e incertidumbre	17
Gráficos para PSOE	17
Análisis de Error Aleatorio para PSOE	18
3.1. Análisis de la Dinámica de Inercia Pasada para PSOE	19
Gráficos para PSOE_pasado	19
Análisis de Error Aleatorio para PSOE_pasado	20
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para PSOE	21
Gráficos para PSOE_futuro	21
Análisis de Error Aleatorio para PSOE_futuro	22
Gráficos para PP	23
Análisis de Error Aleatorio para PP	24
3.1. Análisis de la Dinámica de Inercia Pasada para PP	25
Gráficos para PP_pasado	25
Análisis de Error Aleatorio para PP_pasado	26
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para PP	27

Gráficos para PP_futuro	27
Análisis de Error Aleatorio para PP_futuro	28
Gráficos para VOX	29
Análisis de Error Aleatorio para VOX	30
3.1. Análisis de la Dinámica de Inercia Pasada para VOX	31
Gráficos para VOX_pasado	31
Análisis de Error Aleatorio para VOX_pasado	32
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para VOX	33
Gráficos para VOX_futuro	33
Análisis de Error Aleatorio para VOX_futuro	34
Gráficos para Ciudadanos	35
Análisis de Error Aleatorio para Ciudadanos	36
3.1. Análisis de la Dinámica de Inercia Pasada para Ciudadanos	37
Gráficos para Ciudadanos_pasado	37
Análisis de Error Aleatorio para Ciudadanos_pasado	38
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Ciudadanos	39
Gráficos para Ciudadanos_futuro	39
Análisis de Error Aleatorio para Ciudadanos_futuro	40
Gráficos para Sumar	41
Análisis de Error Aleatorio para Sumar	42
3.1. Análisis de la Dinámica de Inercia Pasada para Sumar	43
Gráficos para Sumar_pasado	43
Análisis de Error Aleatorio para Sumar_pasado	44
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Sumar	45
Gráficos para Sumar_futuro	45
Análisis de Error Aleatorio para Sumar_futuro	46
Gráficos para Podemos	47
Análisis de Error Aleatorio para Podemos	48
3.1. Análisis de la Dinámica de Inercia Pasada para Podemos	49
Gráficos para Podemos_pasado	49
Análisis de Error Aleatorio para Podemos_pasado	50
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Podemos	51

Gráficos para Podemos_futuro	51
Análisis de Error Aleatorio para Podemos_futuro	52
Gráficos para Ahora_Repúblicas	53
Análisis de Error Aleatorio para Ahora_Repúblicas	54
3.1. Análisis de la Dinámica de Inercia Pasada para Ahora_Repúblicas	55
Gráficos para Ahora_Repúblicas_pasado	55
Análisis de Error Aleatorio para Ahora_Repúblicas_pasado	56
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Ahora_Repúblicas	57
Gráficos para Ahora_Repúblicas_futuro	57
Análisis de Error Aleatorio para Ahora_Repúblicas_futuro	58
Gráficos para Junts_UE	59
Análisis de Error Aleatorio para Junts_UE	60
3.1. Análisis de la Dinámica de Inercia Pasada para Junts_UE	61
Gráficos para Junts_UE_pasado	61
Análisis de Error Aleatorio para Junts_UE_pasado	62
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Junts_UE	63
Gráficos para Junts_UE_futuro	63
Análisis de Error Aleatorio para Junts_UE_futuro	64
Gráficos para Ceus	65
Análisis de Error Aleatorio para Ceus	66
3.1. Análisis de la Dinámica de Inercia Pasada para Ceus	67
Gráficos para Ceus_pasado	67
Análisis de Error Aleatorio para Ceus_pasado	68
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Ceus	69
Gráficos para Ceus_futuro	69
Análisis de Error Aleatorio para Ceus_futuro	70
Gráficos para Seacabólafiesta	71
Análisis de Error Aleatorio para Seacabólafiesta	72
3.1. Análisis de la Dinámica de Inercia Pasada para Seacabólafiesta	73
Gráficos para Seacabólafiesta_pasado	73
Análisis de Error Aleatorio para Seacabólafiesta_pasado	74
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Seacabólafiesta	75

Gráficos para Seacabólafiesta_futuro	75
Análisis de Error Aleatorio para Seacabólafiesta_futuro	76
Gráficos para Otros	77
Análisis de Error Aleatorio para Otros	78
3.1. Análisis de la Dinámica de Inercia Pasada para Otros	79
Gráficos para Otros_pasado	79
Análisis de Error Aleatorio para Otros_pasado	80
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Otros	81
Gráficos para Otros_futuro	81
Análisis de Error Aleatorio para Otros_futuro	82
Gráficos para Enblanco	83
Análisis de Error Aleatorio para Enblanco	84
3.1. Análisis de la Dinámica de Inercia Pasada para Enblanco	85
Gráficos para Enblanco_pasado	85
Análisis de Error Aleatorio para Enblanco_pasado	86
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Enblanco	87
Gráficos para Enblanco_futuro	87
Análisis de Error Aleatorio para Enblanco_futuro	88
Interacción de la estructura de inercia y los patrones de incertidumbre	89
Tabla de Coeficiente de Variación (CV)	90
Comparación de Coeficientes de Variación	91
Tabla Comparativa de Patrones de Incertidumbre	92
Mapa de Calor Comparativa de Patrones de Incertidumbre	93
Boxplot de la Distribución de Patrones de Incertidumbre	94
Máximos y Mínimos de los patrones medios de incertidumbre por Partido	95
4. Matrices de pago entre partidos según patrones medios de incertidumbre	96
Matriz de Pagos - Escenario 1	97
Matriz de Pagos - Escenario 1	97
Matriz de Pagos - Escenario 2	99
Matriz de Pagos - Escenario 2	99
Matriz de Pagos - Escenario 3	101
Matriz de Pagos - Escenario 3	101

Matriz de Pagos - Escenario 4	103
Matriz de Pagos - Escenario 4	103
Matriz de Pagos - Escenario 5	105
Matriz de Pagos - Escenario 5	105
Matriz de Pagos - Escenario 6	107
Matriz de Pagos - Escenario 6	107
Matriz de Pagos - Escenario 7	109
Matriz de Pagos - Escenario 7	109
5. Referencias	111

Claves de lectura

Este informe técnico presenta un resumen de los análisis efectuados para la estimación del apoyo electoral que reciben los partidos políticos coyunturalmente en el momento concreto de efectuarse la medición. Una estimación electoral publicada periódicamente por el Centro de Investigaciones Sociologicas en sus barómetros mensuales. Todas las estimaciones son el resultado de aplicar un único modelo teórico de referencia (Modelo Bifactorial Inercia-Incertidumbre), un único método de especificación (metodología de escenarios) así como de un único sistema de operativización basado en estructuras motivacionales de los electores. En ese sentido, sus resultados son completamente comparables a lo largo del tiempo.

Los análisis que aquí se presentan se orientan a la detección, medición y sistematización de diferentes estimaciones de apoyo electoral en función de diversos configuraciones de escenarios. Con dicha finalidad, se efectúa un estudio diagnóstico exhaustivo de las estructuras y patrones de respuestas presentes en la encuesta de opinión pública. No es un análisis exploratorio; por el contrario, se encuentra en todo momento monitorizado teóricamente, de tal modo que todos los resultados son interpretables en el marco analítico que establece el Modelo Bifactorial Inercia Incertidumbre. La acumulación en el tiempo de sucesivos diagnósticos ha permitido tanto refinar los algoritmos estadísticos como las operaciones analíticas realizadas. En ese sentido, se presentan aquí aquellas más sustantivas para conocer y comprender el grado de equilibrio (interdependencia de las estimaciones) y estabilidad (consistencia) de los apoyos electorales que reciben los partidos en el momento de la recolección de datos.

Este informe se estructura del modo siguiente. En primer lugar se efectúa una presentación muy sintética del Modelo Bifactorial Inercia Incertidumbre que sirve de marco de referencia para la especificación de los procedimientos analíticos. Existen en la actualidad (ver listado de referencias) suficientes publicaciones sobre su aplicación para que se encuentre exhaustivamente documentado. En un segundo apartado se muestran las distribuciones de las mediciones para cada partido para el conjunto de los escenarios; esto permite evaluar a) la concentración o dispersión de los estimaciones, así como b) la presencia de multimodalidad o c) discontinuidades que indican la existencia de funciones latentes discontinuas que se expresan dando lugar a estimaciones fragmentadas. Indirectamente es una medición de la mayor o menor fragilidad en los apoyos electorales. En un segundo apartado se evalúan en detalle de forma segmentada la secuencia de escenarios, descomponiendo los elementos de inercia y los patrones de incertidumbre. El residual es analizado en detalle con la finalidad de identificar regularidades asociadas localmente a conjuntos de escenarios. Se evalúa por una parte de estructura procedente de la inercia pasada y por otra las inercias presentes y las expectativas de futuro. La interpretación analítica del error implica que de presentarse como no aleatorio de forma reiterada, existen factores de variabilidad estructural que podrían estar vinculados con la contribución de la composición sociodemográfica del apoyo que recibe cada partido en cada escenario.

Se analizan las interacciones existentes entre las inercias y los patrones de incertidumbre, estableciendo si son aditivas o multiplicativas. En el caso de ser multiplicativas se evalúa si son de variabilidad creciente o decreciente en función de la inercia pasado-presente-futuro. La variabilidad decreciente se interpreta

como una mayor concentración y grado de decisión de los apoyos electorales en el presente y las expectativas futuras. La variabilidad creciente significa que se incrementa la fragilidad y volatilidad de sus apoyos considerando la disposición a la movilización electoral.

La varianza de las estimaciones se descompone en los componentes de inercia e incertidumbre. En definitiva, que grado de consistencia trasmiten la inercia y de los patrones de incertidumbre a la estimación final. Se identifica en primer lugar la consistencia interna del conjunto de estimaciones (homogénea, no homogénea) y en segundo lugar la fuente de la variabilidad (inercia o incertidumbre). En ese sentido, un interés especial presenta los patrones medios de incertidumbre según escenarios. Este análisis se concentra en la mayor o menor exposición y dependencia de cada partido a las diferentes condiciones que configuran los escenarios. Introduce de forma sintética las ventajas y desventajas de cada escenario para la competición multipartidista. En la práctica, es la vía de entrada a la aplicación de la teoría de juegos, por lo que finalmente se presentan varios análisis que permiten un mejor conocimiento de los escenarios de competición.

En un último apartado se desarrolla el estudio de los patrones de incertidumbre de forma comparada entre partidos. La aplicación del método de escenarios en el Modelo Bifactorial permite establecer las matrices de pagos (simétricas de suma cero) en las que se muestran las ventajas o desventajas comparativas para cada partido con relación a los demás en los diferentes escenarios.

1. Modelo Bifactorial Inercia Incertidumbre

El Modelo Bifactorial Inercia-Incertidumbre fue diseñado en el año 2019 por los profesores Antonio Alaminos (Universidad de Alicante) y José Félix Tezanos (UNED), siendo en el momento de publicarse este informe el utilizado por el Centro de Investigaciones Sociológicas para realizar las mediciones del apoyo electoral que reciben los partidos políticos. El Modelo Bifactorial Inercia-Incertidumbre es un modelo de medición que constituye una propuesta teórica y metodológica importante en varios sentidos. En primer lugar, pone de relieve y destaca la existencia de "borrosidad" en las decisiones de las personas. Una incertidumbre real que no puede ser obviada por la exigencia de respuestas únicas e imaginariamente definitivas sobre el estado de la opinión pública. La asunción de dicha premisa, el posible estado indeterminado del fenómeno objeto de medición da forma al enfoque analítico aplicado desde el modelo. Se asume, sistematiza e integra el significado y efectos de dicha incertidumbre.

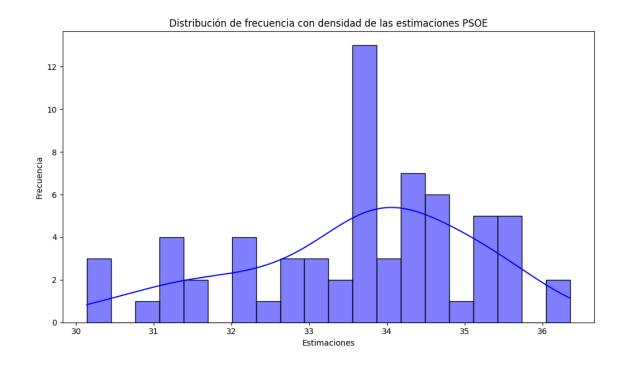
El procedimiento aplicado se basa en la metodología de escenarios, si bien aplicados a la exploración del presente y no a la indagación sobre el futuro. Aproximar la realidad social como un objeto de estudio que no es rígido ni definitivo exige que algunos de los instrumentos que se aplican para conocerla deben ser sensibles para registrar ese hecho. Por ello, en la medida que se incorpora la incertidumbre y la inercia al proceso de medición, el modelo adquiere la aplicabilidad de una "caja de herramientas" analíticas, algo que se ejemplifica en este informe técnico. En el caso del Centro de Investigaciones Sociológicas, la medición del apoyo electoral que recibe un partido es una labor que va más allá de estimar un porcentaje o su intervalo de confianza. Implica una exploración y diagnóstico de los escenarios potenciales, considerando los más probables (voto directo) y evaluando los más improbables (voto alternativo).

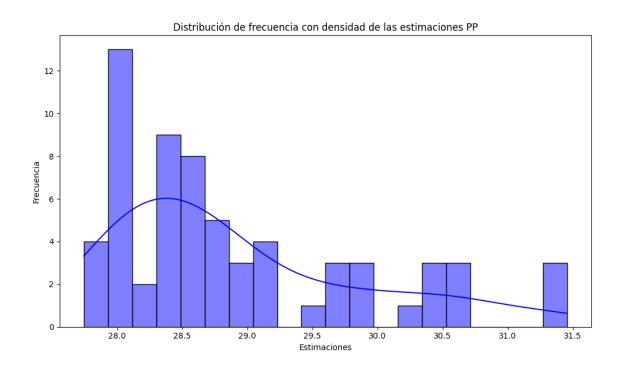
El Modelo Bifactorial Inercia-Incertidumbre aplica el método de escenarios como herramienta de análisis y diagnóstico multifuncional. En ese sentido, una de sus aplicaciones en tanto que instrumento de medición es la estimación electoral, si bien este no se encuentra limitado a dicha finalidad. Su finalidad es esencialmente de diagnóstico, midiendo las tensiones internas existentes en términos de decisión electoral por parte de los ciudadanos. Destaca por ello por su capacidad para monitorizar de forma empírica las dinámicas internas de los electorados tal y como se expresan a través de los escenarios.

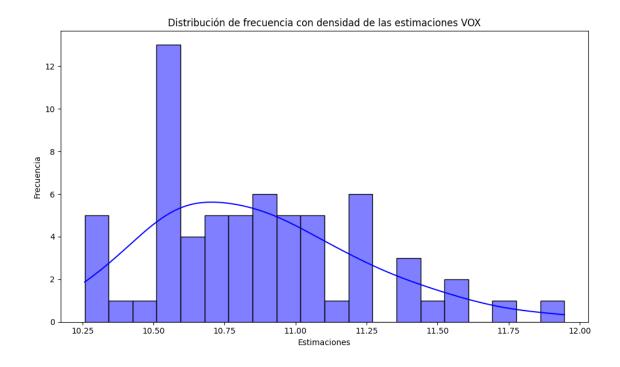
Como se ha afirmado anteriormente, en su diseño se parte del reconocimiento de la existencia de incertidumbre e inercias en las decisiones de los electorados. Un reconocimiento que conduce, de forma evidente, a un método de análisis que integre la indeterminación. El Modelo Bifactorial considera que el estado de un fenómeno social en el momento de la medición es el resultado de una combinación entre la inercia del pasado y la novedad que aporte el presente o la expectativa de las personas sobre su comportamiento en el futuro. El Modelo Bifactorial considera que dentro de un campo de posibilidad definido por los votos directos y los alternativos así como por diferentes escenarios existe un subconjunto de probabilidad. Aquello que es más o menos probable dadas las condiciones de posibilidad existentes. Por ejemplo, en una predicción electoral se presupone la existencia en el futuro de una diana. Una "diana" que, en un formato paramétrico, plantea que el futuro ya está aquí. En ese sentido, el objetivo de una

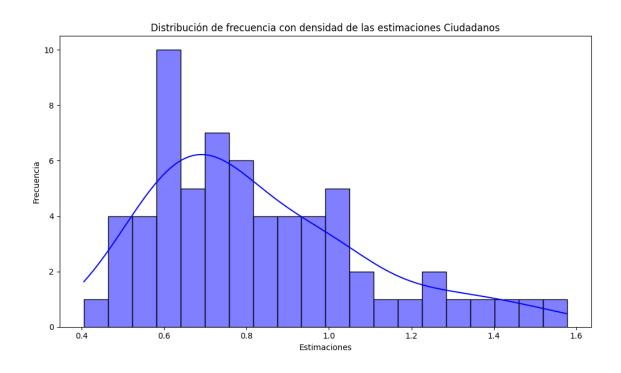
predicción es aproximarse al centro paramétrico de una diana que, insistimos, ya estaba preconfigurada en el pasado en el que habitaban quienes produjeron la predicción.

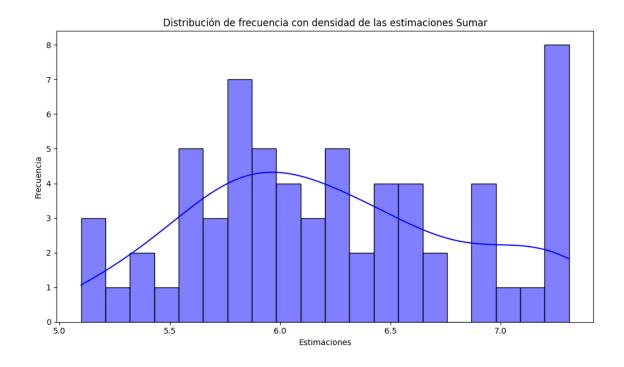
El Modelo Bifactorial Inercia-Incertidumbre enfoca la cuestión desde otra perspectiva. La diana futura no existe. Solo existe el presente, sus inercias y sus incertidumbres reales. El desafío que enfrenta el Modelo Bifactorial es diferente al de una predicción dado que su finalidad es estimar la "diana" y evaluar su contorno. En otras palabras, identificar dónde y qué forma tiene la "diana" a la que apuntarían las predicciones. No se trata de una diana preexistente en un futuro determinista. Es una "diana" que debe ser configurada y en sí misma estimada sobre un espacio de posibilidades. La aplicación al presente del método de escenarios parte de la premisa de que el presente no está completamente definido o decidido. Con mayor razón cuando se trata de medir en el presente la probabilidad de un comportamiento futuro. Preguntar a una persona qué haría en una circunstancia hipotética, unas elecciones, solamente puede recibir respuesta hipotéticas y abiertas al cambio. Una apertura al cambio que puede ser de mayor o menor magnitud, afectar a unos partidos más que a otros, pero siempre existente. Así, la decisión sobre votar o qué votar alcanza un grado de certeza diferente según los electorados. Pero es una indecisión que es real y define el presente. En ese sentido, una medición del estado actual de los electorados mediante escenarios participa de todos los elementos que caracterizan al estudio de un fenómeno futuro.

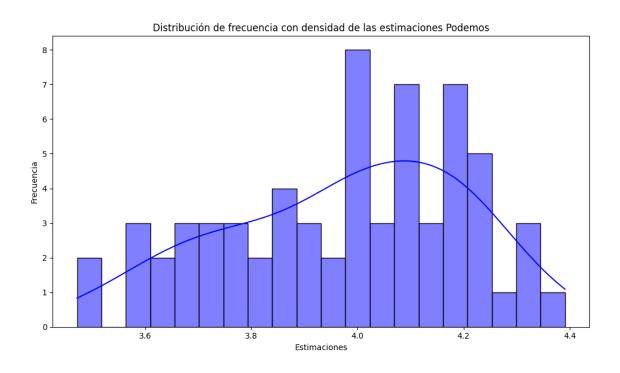

La metodología de escenarios define un enfoque sistematizado utilizado para explorar y desarrollar múltiples opciones posibles en un contexto de incertidumbre. Herman Kahn y Anthony Wiener (1967) definieron los escenarios como "hipotéticas secuencias de eventos construidas con el propósito de focalizar la atención en causalidades y decisiones", poniendo el énfasis en la secuencia de eventos y su impacto potencial. En otra definición, Pierre Wack (1985), considera el método de escenarios como "la forma de pensar en realidades múltiples", subrayando la necesidad de reconocer y adaptarse a diversas pero posibles futuras realidades. Precisamente Wack enfatizó la utilidad de los escenarios para desafiar el pensamiento lineal y promover una planificación más flexible y adaptable. En su aplicación mediante el Modelo Bifactorial, la propuesta es considerar el presente como algo abierto y no cerrado en una única medición denotativa.

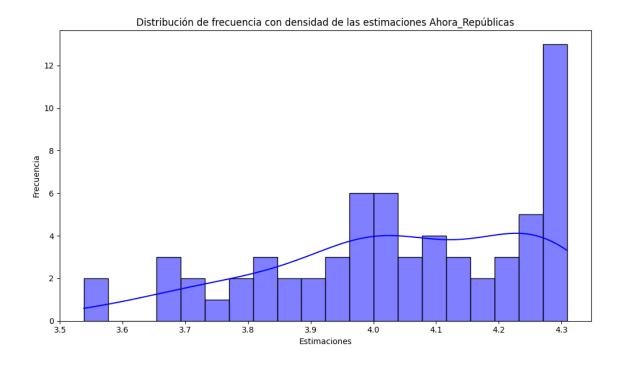

Por ello, la metodología de escenarios aplicada a la medición implica una reconceptualización en función del objeto. Reconoce que el presente no es un punto fijo, sino un espectro de posibilidades múltiples y divergentes; se asume que el presente es inherentemente incierto y que cualquier intento de medirlo precisa considerar múltiples variantes de actuación y su interacción. Unos escenarios que involucran a diversos tipos de electores según su contribución a la incertidumbre global: es el caso de electores militantes, simpatizantes, afines o que realmente dudan entre diferentes partidos políticos (voto alternativo).

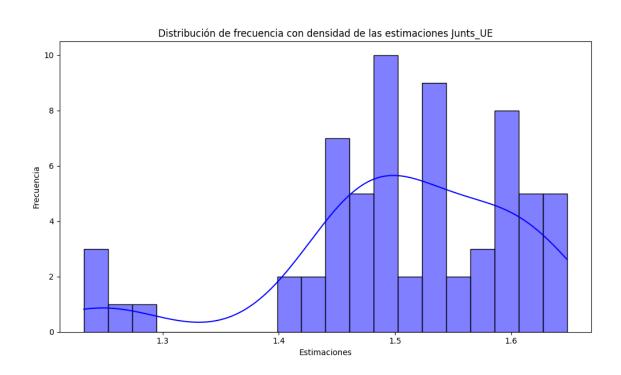

Los escenarios son construidos a través de un proceso que generalmente incluye la identificación de factores clave, tendencias, y fuerzas impulsoras; El Modelo Bifactorial utiliza como base de para la identificación de los factores clave el Modelo Pentafactorial de motivación electoral propuesto por los profesores Alaminos y Alaminos Fernández (2012, 2016, 2023) integrando estos elementos en realidades coherentes y probables; tras la especificación de escenarios se evalúan sus impactos potenciales. La especificación se encuentra abierta a la incorporación de nuevos factores, en la medida que tanto el tipo

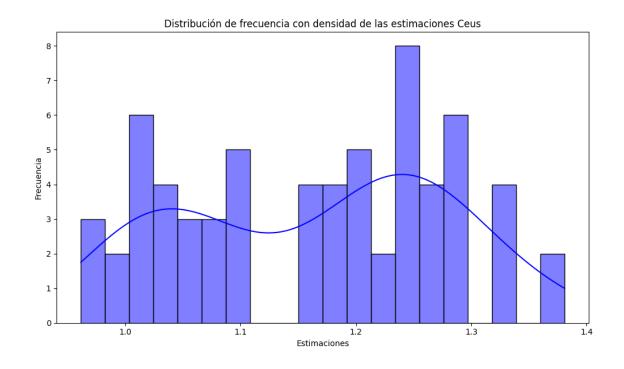

de elección como las variables disponibles condicionan la configuración de referencia. Finalmente, la implementación de los algoritmos en Python ha sido efectuada por Alaminos-Fernández. En este análisis se emplean siete escenarios de incertidumbre y tres estructuras de inercia (pasado, presente y futuro). Para una información más detallada y exhaustiva se presentan al final del documento una relación de referencias teóricas y de análisis aplicado. Los escenarios que operativizan los patrones de incertidumbre en este análisis pivotan sobre los siguientes factores que los identifican. Escenario 1: escenario base; escenario 2: afinidad ideológica; escenario 3: imagen de partido; escenario 4: efecto de clima (partido que le gustaría que ganase); escenario 5: afinidad ideológica en configuración de alta movilización; escenario 6: imagen de partido en configuración de alta movilización y finalmente escenario 7: efecto de clima (partido que le gustaría que ganase) en configuración de alta movilización.

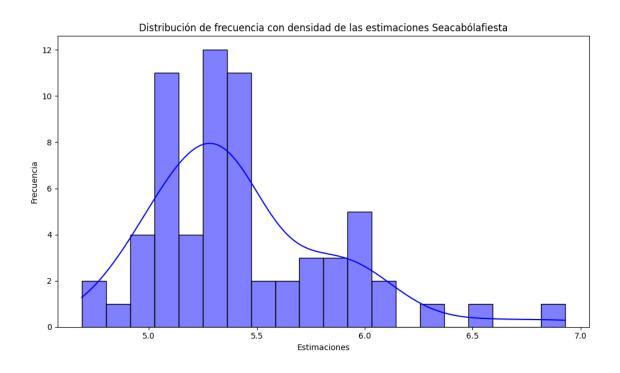

2. Análisis distribucional de los escenarios

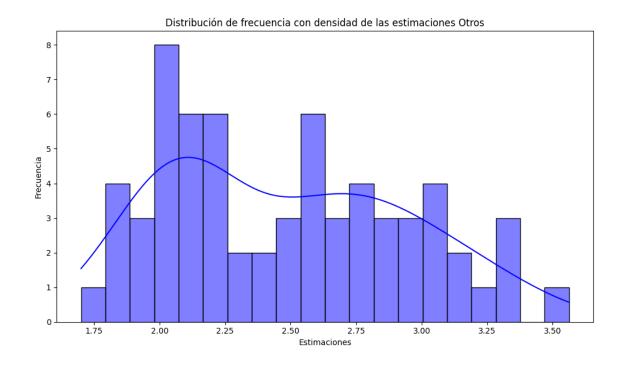


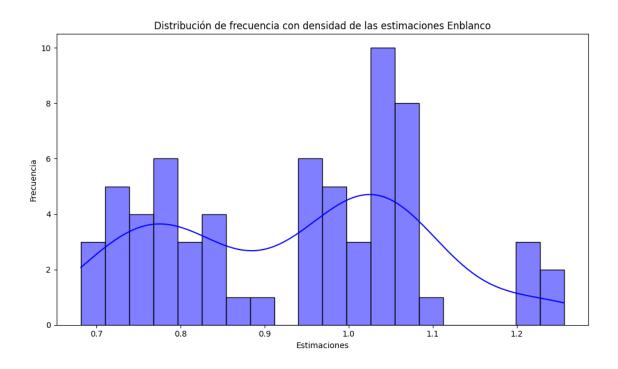


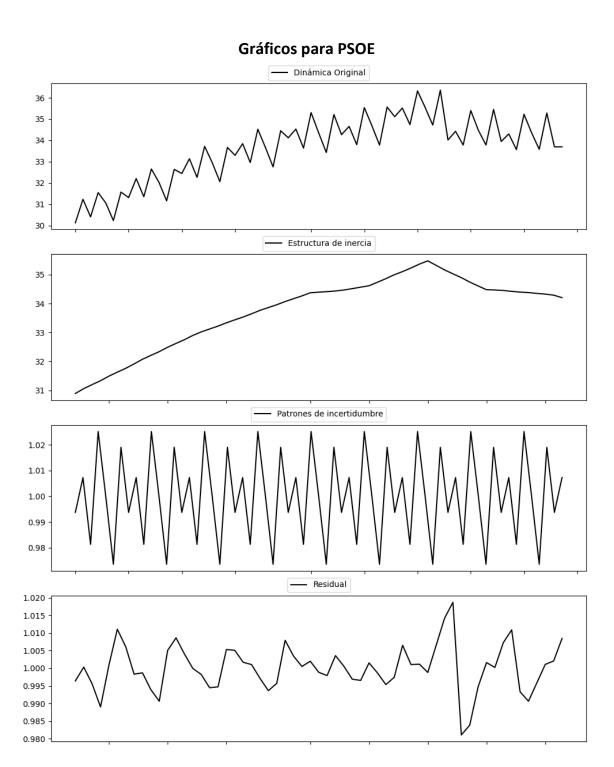


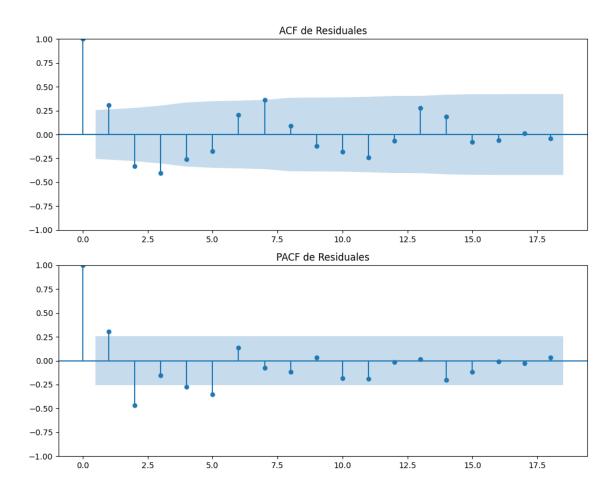












3. Análisis de los componentes de inercia e incertidumbre

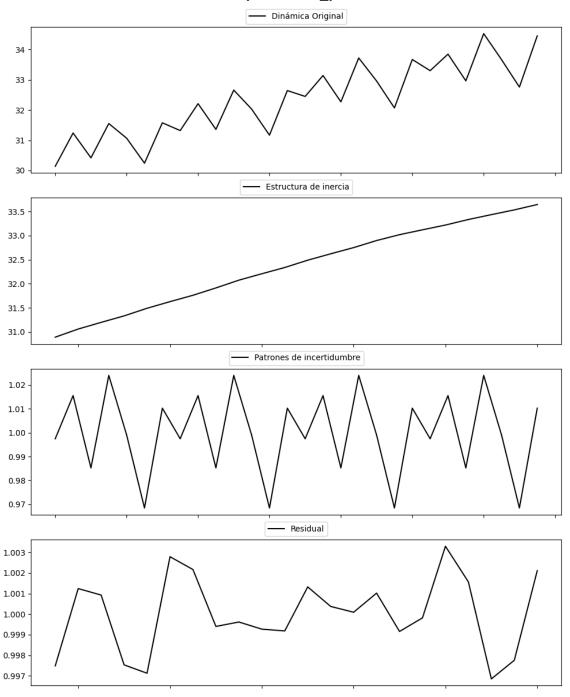
Análisis de Error Aleatorio para PSOE

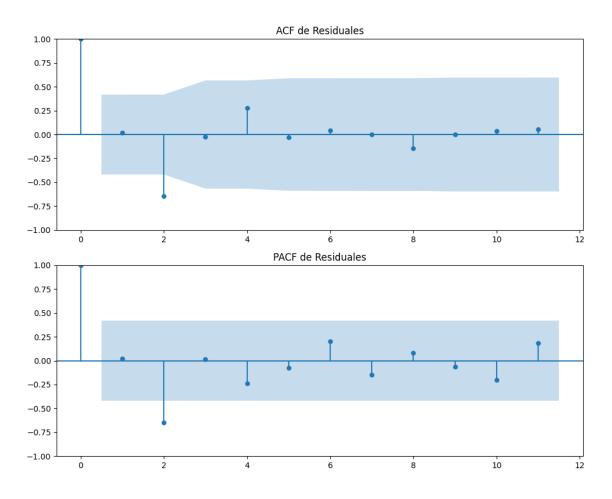
Estadística de Durbin-Watson: 0.0001

Prueba de Ljung-Box:

Estadísticos: 45.7948, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9809, p-valor=0.4808


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.1. Análisis de la Dinámica de Inercia Pasada para PSOE

Gráficos para PSOE_pasado

Análisis de Error Aleatorio para PSOE_pasado

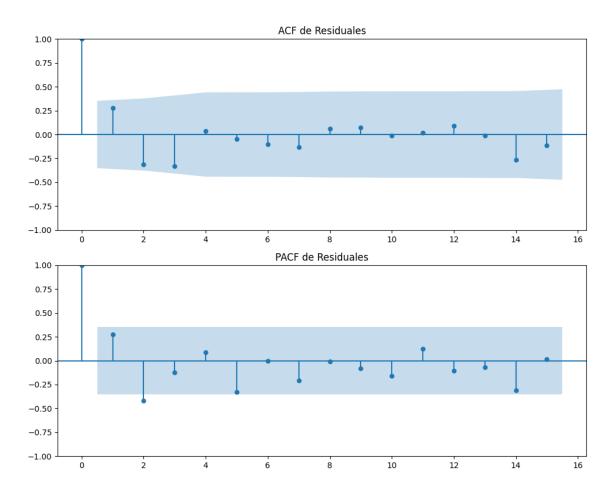
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 14.1669, p-valor: 0.1655

Prueba de Shapiro-Wilk: Estadístico=0.9631, p-valor=0.5550

Prueba de Dickey-Fuller aumentada: p-valor=0.7125


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para PSOE

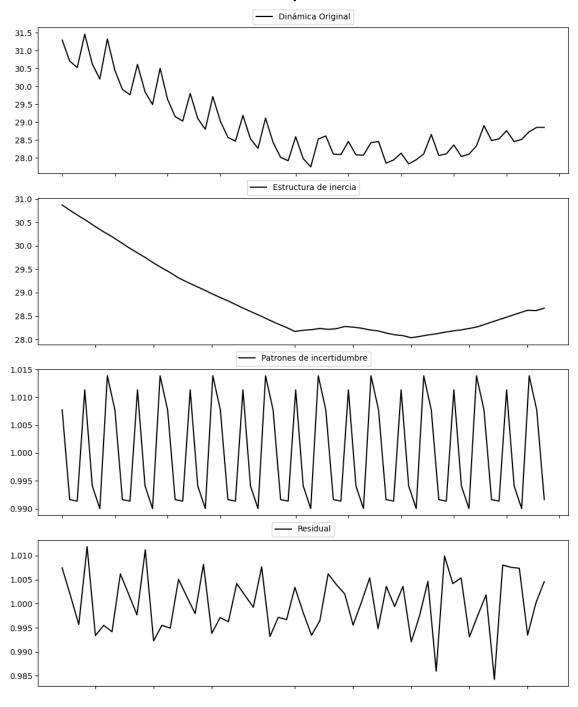
Gráficos para PSOE_futuro

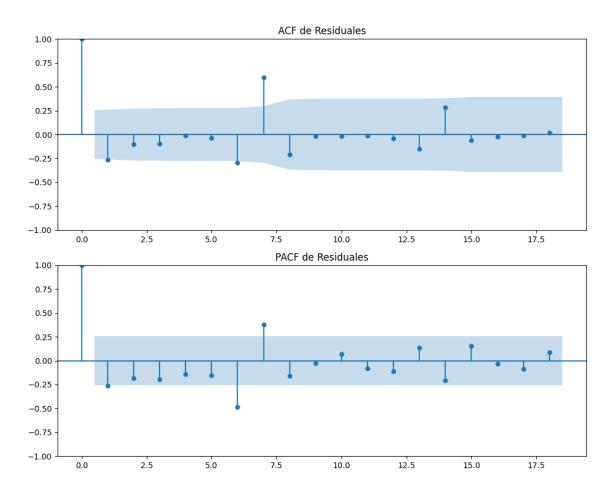
Análisis de Error Aleatorio para PSOE_futuro

Estadística de Durbin-Watson: 0.0001

Prueba de Ljung-Box:

Estadísticos: 11.8536, p-valor: 0.2950


Prueba de Shapiro-Wilk: Estadístico=0.9722, p-valor=0.5813


Prueba de Dickey-Fuller aumentada: p-valor=0.0001

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para PP

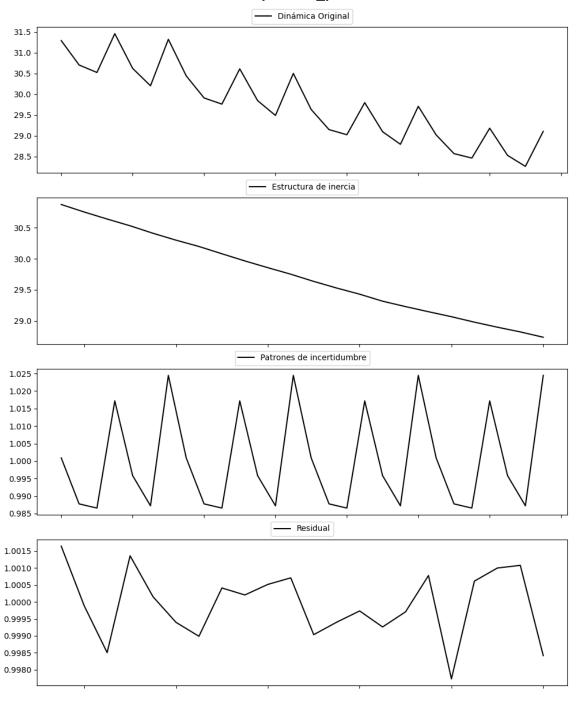
Análisis de Error Aleatorio para PP

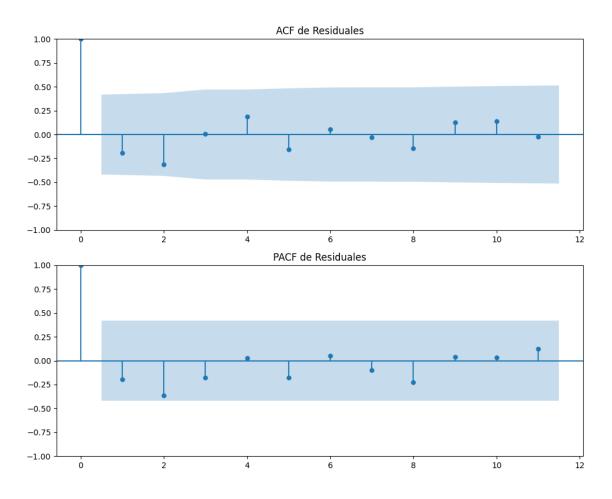
Estadística de Durbin-Watson: 0.0001

Prueba de Ljung-Box:

Estadísticos: 39.4474, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9754, p-valor=0.2752


Prueba de Dickey-Fuller aumentada: p-valor=0.0027


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.1. Análisis de la Dinámica de Inercia Pasada para PP

Gráficos para PP_pasado

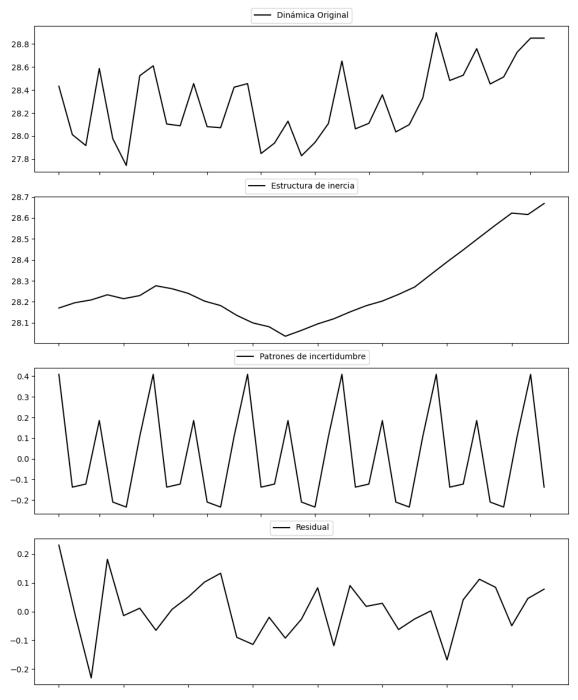
Análisis de Error Aleatorio para PP_pasado

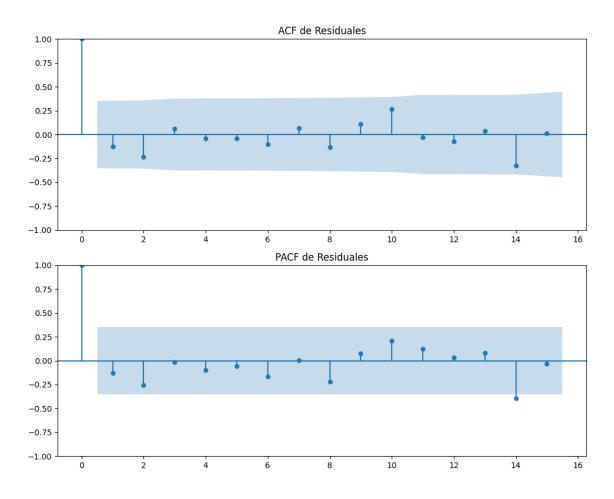
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 7.7648, p-valor: 0.6518

Prueba de Shapiro-Wilk: Estadístico=0.9807, p-valor=0.9260


Prueba de Dickey-Fuller aumentada: p-valor=0.6419


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para PP

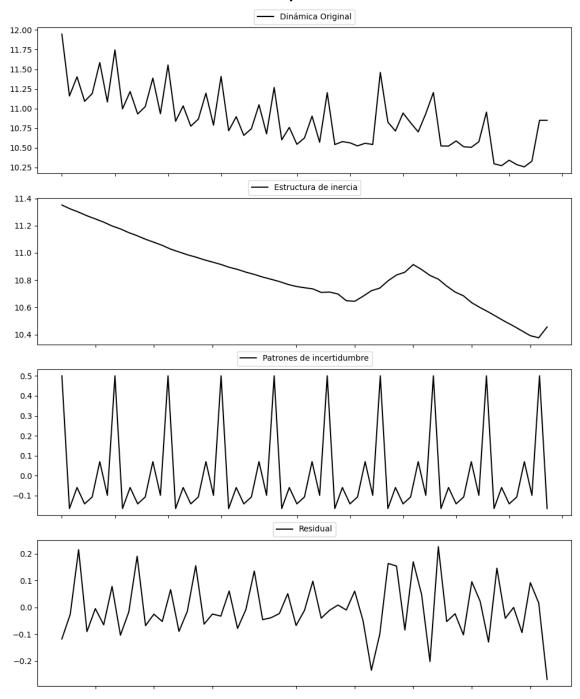
Gráficos para PP_futuro

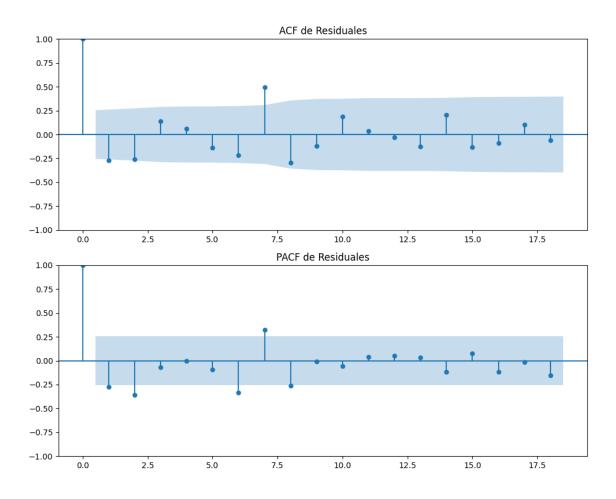
Análisis de Error Aleatorio para PP_futuro

Estadística de Durbin-Watson: 2.0603

Prueba de Ljung-Box:

Estadísticos: 8.2014, p-valor: 0.6092


Prueba de Shapiro-Wilk: Estadístico=0.9942, p-valor=0.9997


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

Gráficos para VOX

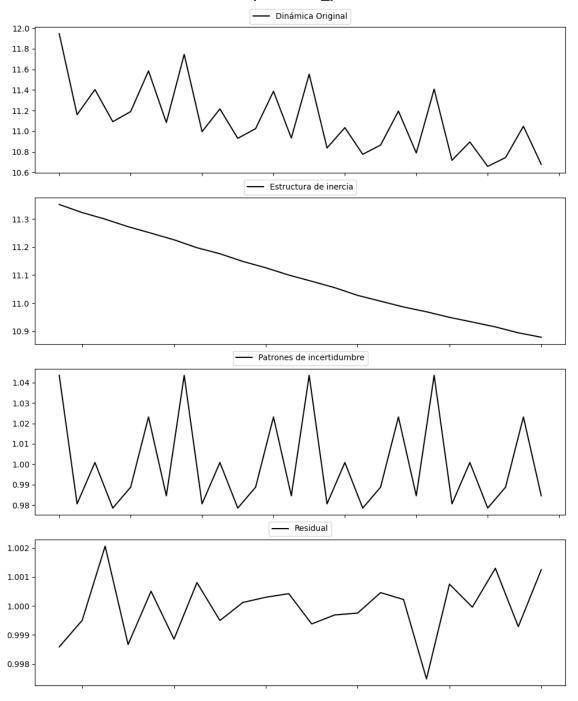
Análisis de Error Aleatorio para VOX

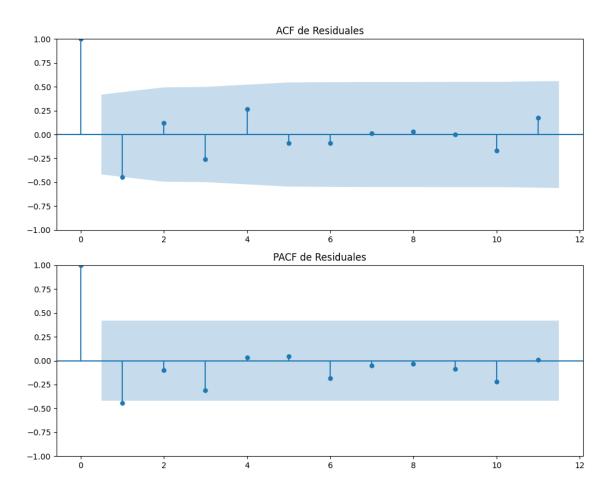
Estadística de Durbin-Watson: 2.4082

Prueba de Ljung-Box:

Estadísticos: 41.6290, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9661, p-valor=0.0985


Prueba de Dickey-Fuller aumentada: p-valor=0.0028


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.1. Análisis de la Dinámica de Inercia Pasada para VOX

Gráficos para VOX_pasado

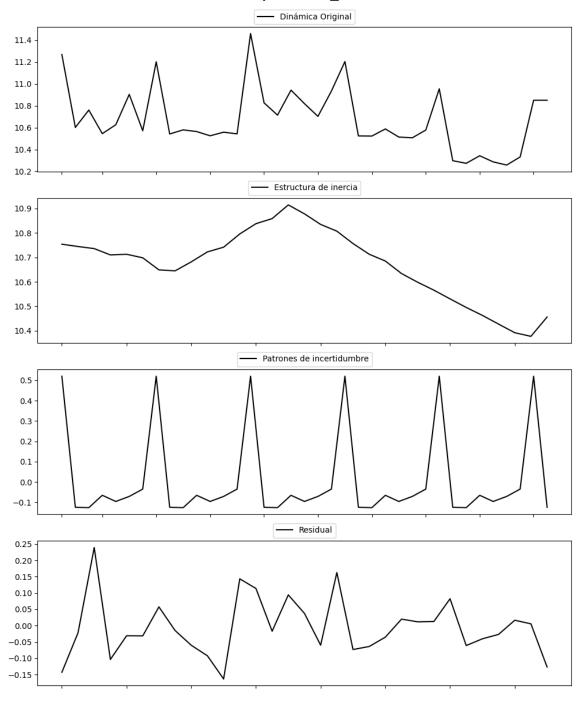
Análisis de Error Aleatorio para VOX_pasado

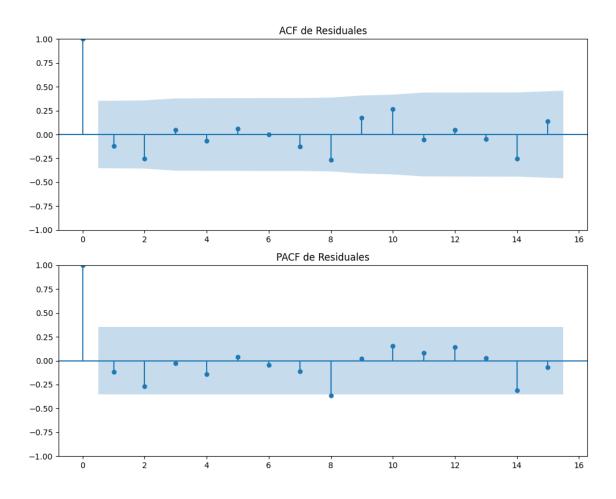
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 11.1311, p-valor: 0.3474

Prueba de Shapiro-Wilk: Estadístico=0.9878, p-valor=0.9912


Prueba de Dickey-Fuller aumentada: p-valor=0.3985


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para VOX

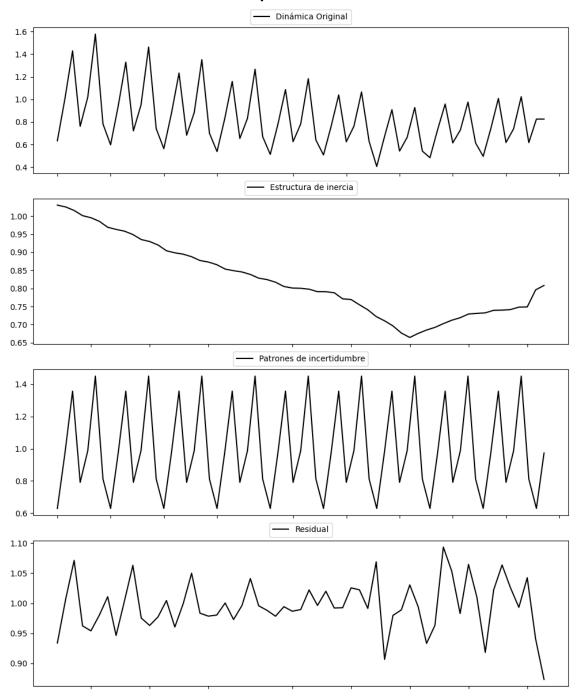
Gráficos para VOX_futuro

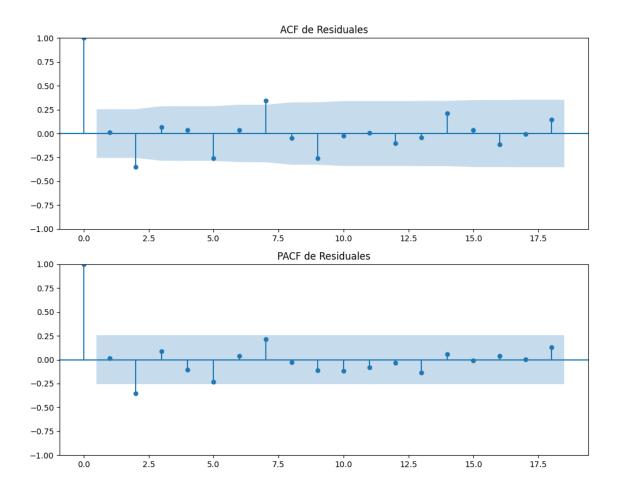
Análisis de Error Aleatorio para VOX_futuro

Estadística de Durbin-Watson: 2.0926

Prueba de Ljung-Box:

Estadísticos: 11.8296, p-valor: 0.2966


Prueba de Shapiro-Wilk: Estadístico=0.9609, p-valor=0.3073


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para Ciudadanos

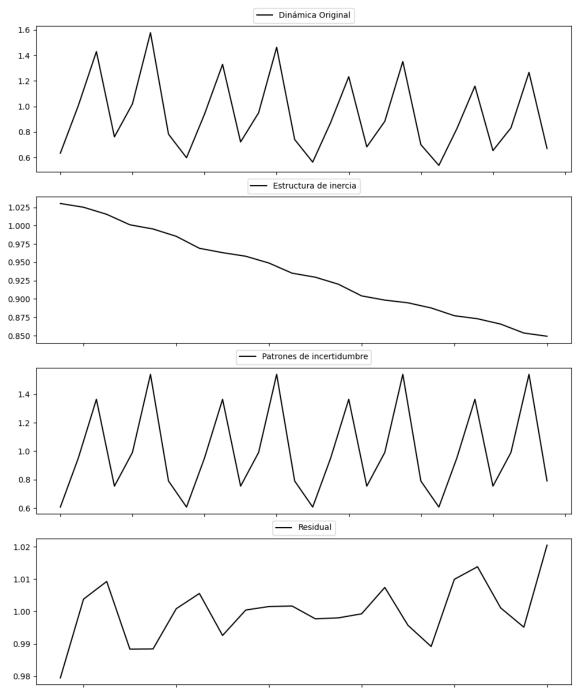
Análisis de Error Aleatorio para Ciudadanos

Estadística de Durbin-Watson: 0.0031

Prueba de Ljung-Box:

Estadísticos: 25.8800, p-valor: 0.0039

Prueba de Shapiro-Wilk: Estadístico=0.9782, p-valor=0.3687


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.1. Análisis de la Dinámica de Inercia Pasada para Ciudadanos

Gráficos para Ciudadanos_pasado

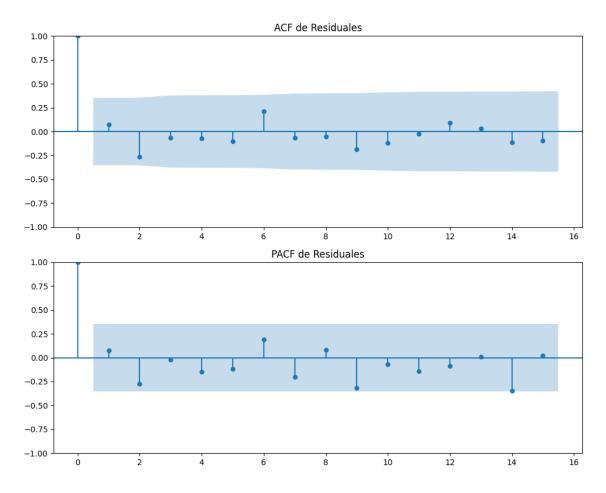
Análisis de Error Aleatorio para Ciudadanos_pasado

Estadística de Durbin-Watson: 0.0001

Prueba de Ljung-Box:

Estadísticos: 16.3384, p-valor: 0.0903

Prueba de Shapiro-Wilk: Estadístico=0.9872, p-valor=0.9889


Prueba de Dickey-Fuller aumentada: p-valor=0.9792

Estacionariedad: No Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

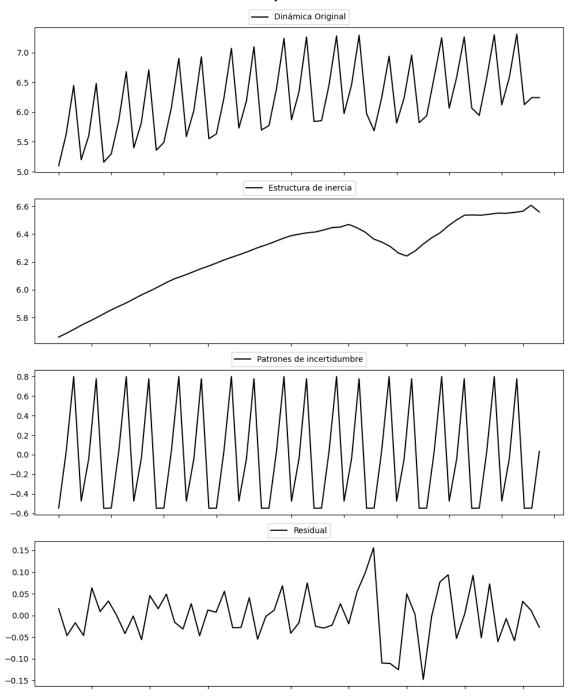
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Ciudadanos

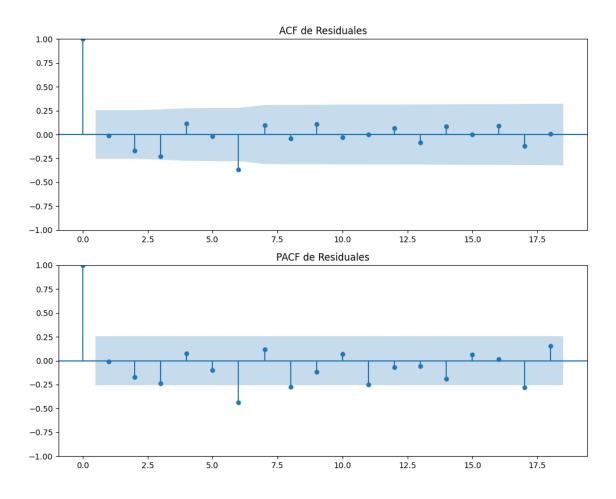
Análisis de Error Aleatorio para Ciudadanos_futuro

Estadística de Durbin-Watson: 0.0028

Prueba de Ljung-Box:

Estadísticos: 7.8981, p-valor: 0.6388


Prueba de Shapiro-Wilk: Estadístico=0.9728, p-valor=0.5980


Prueba de Dickey-Fuller aumentada: p-valor=0.0001

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para Sumar

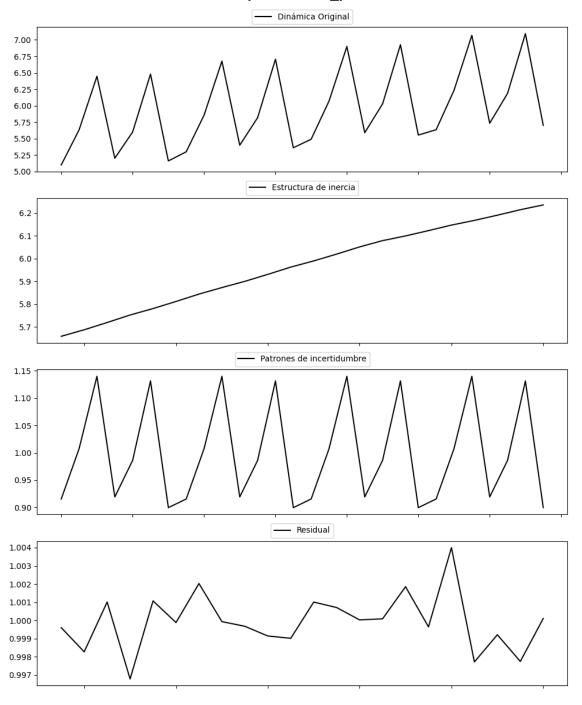
Análisis de Error Aleatorio para Sumar

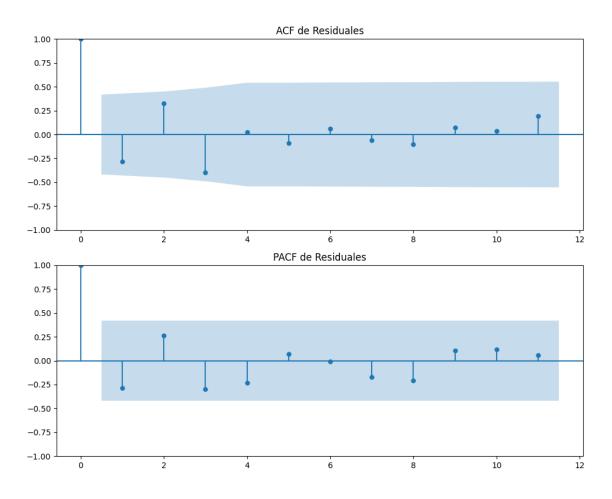
Estadística de Durbin-Watson: 2.0158

Prueba de Ljung-Box:

Estadísticos: 17.0923, p-valor: 0.0723

Prueba de Shapiro-Wilk: Estadístico=0.9856, p-valor=0.7127


Prueba de Dickey-Fuller aumentada: p-valor=0.0004


Estacionariedad: Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

3.1. Análisis de la Dinámica de Inercia Pasada para Sumar

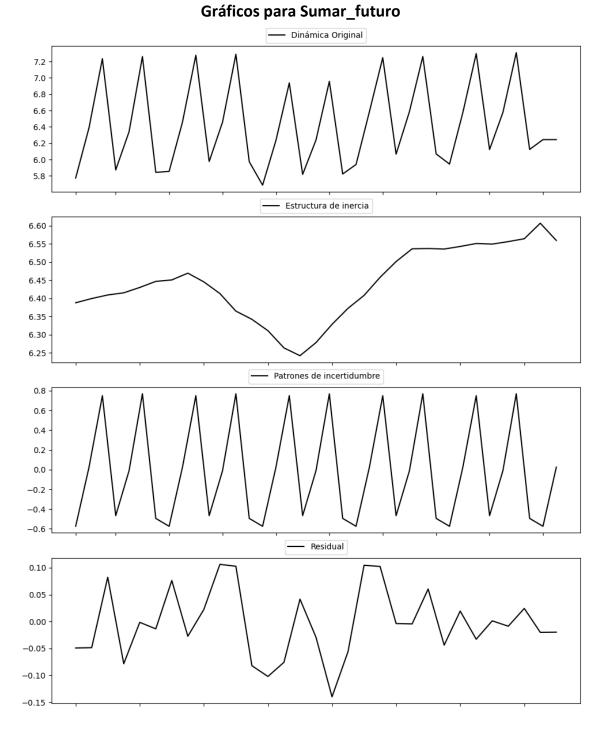
Gráficos para Sumar_pasado

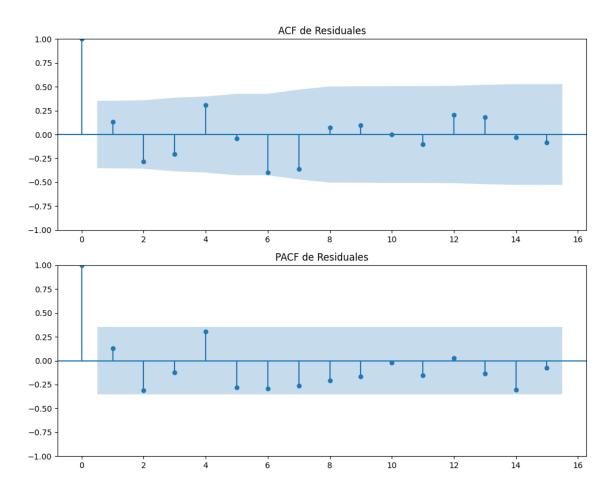
Análisis de Error Aleatorio para Sumar_pasado

Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 10.3265, p-valor: 0.4123


Prueba de Shapiro-Wilk: Estadístico=0.9700, p-valor=0.7104


Prueba de Dickey-Fuller aumentada: p-valor=0.8833

Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

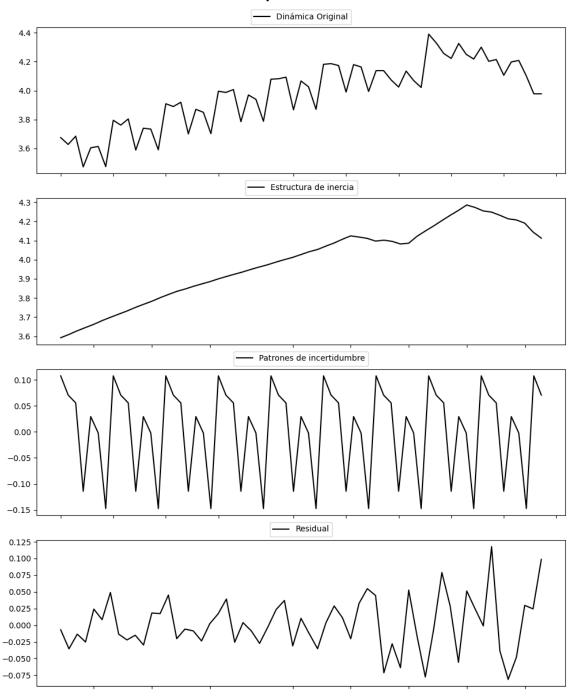
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Sumar

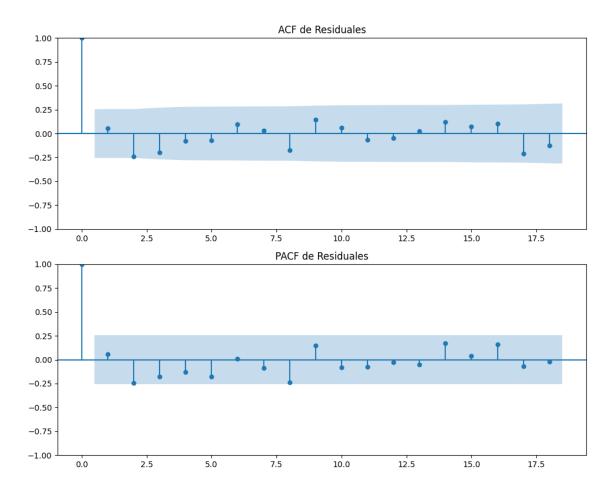
Análisis de Error Aleatorio para Sumar_futuro

Estadística de Durbin-Watson: 1.7124

Prueba de Ljung-Box:

Estadísticos: 21.2892, p-valor: 0.0192


Prueba de Shapiro-Wilk: Estadístico=0.9632, p-valor=0.3542


Prueba de Dickey-Fuller aumentada: p-valor=0.0458

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para Podemos

Análisis de Error Aleatorio para Podemos

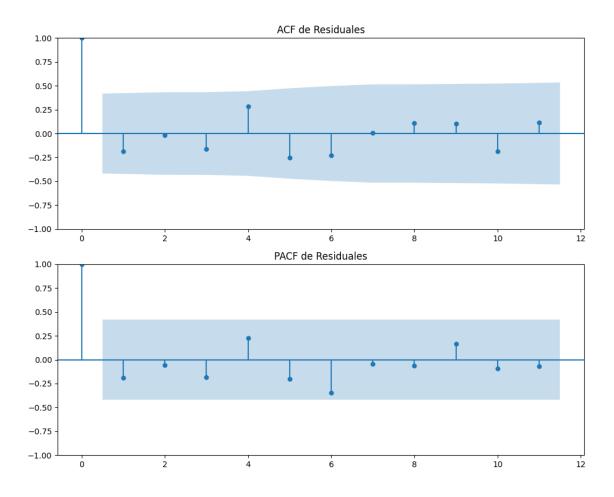
Estadística de Durbin-Watson: 1.7809

Prueba de Ljung-Box:

Estadísticos: 11.6778, p-valor: 0.3072

Prueba de Shapiro-Wilk: Estadístico=0.9817, p-valor=0.5168

Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

3.1. Análisis de la Dinámica de Inercia Pasada para Podemos

Gráficos para Podemos_pasado

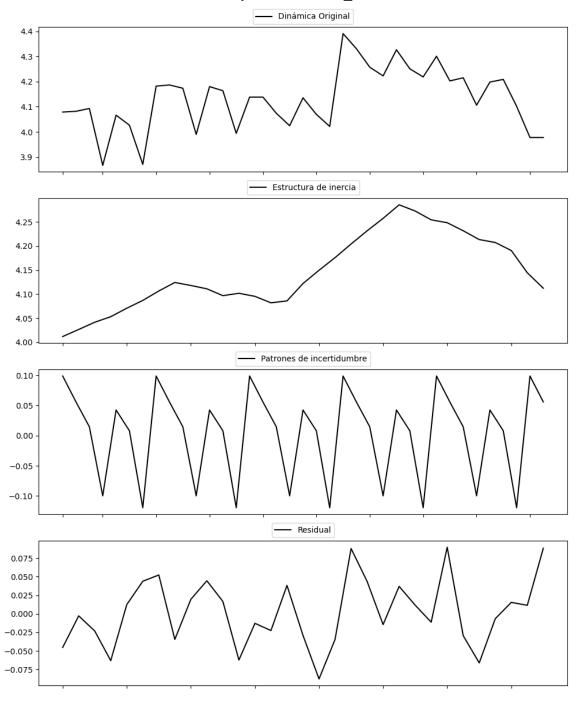
Análisis de Error Aleatorio para Podemos_pasado

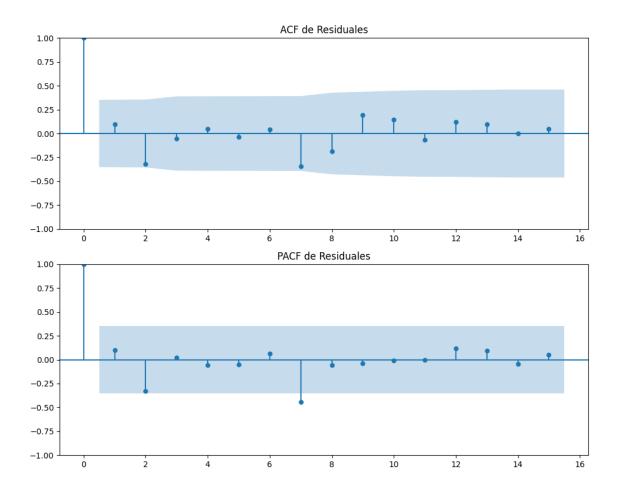
Estadística de Durbin-Watson: 2.2041

Prueba de Ljung-Box:

Estadísticos: 10.1183, p-valor: 0.4302

Prueba de Shapiro-Wilk: Estadístico=0.9756, p-valor=0.8344


Prueba de Dickey-Fuller aumentada: p-valor=0.0372


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Podemos

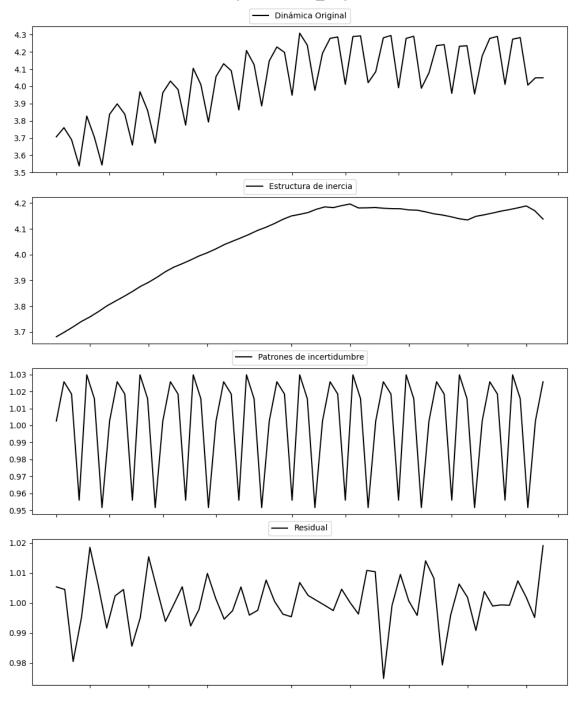
Gráficos para Podemos_futuro

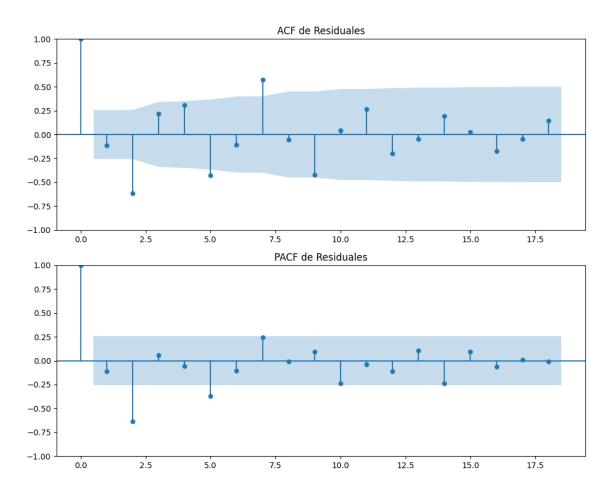
Análisis de Error Aleatorio para Podemos_futuro

Estadística de Durbin-Watson: 1.6504

Prueba de Ljung-Box:

Estadísticos: 13.4438, p-valor: 0.1999


Prueba de Shapiro-Wilk: Estadístico=0.9736, p-valor=0.6242


Prueba de Dickey-Fuller aumentada: p-valor=0.0454

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

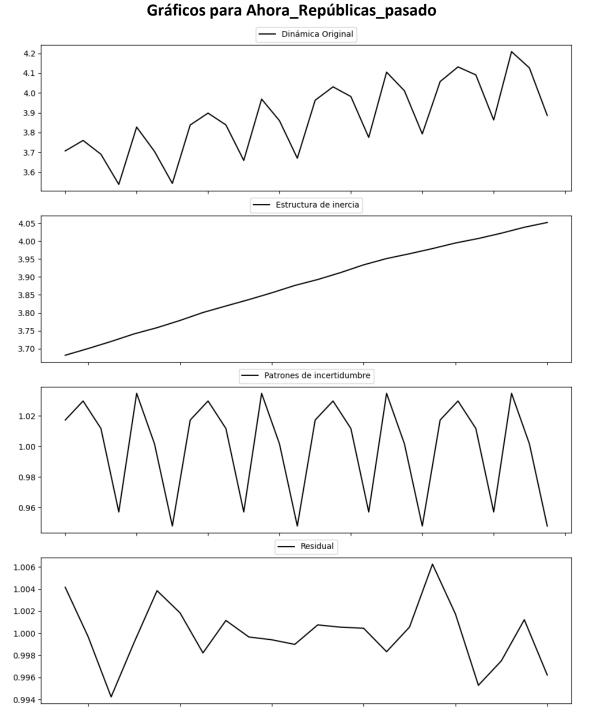
Gráficos para Ahora_Repúblicas

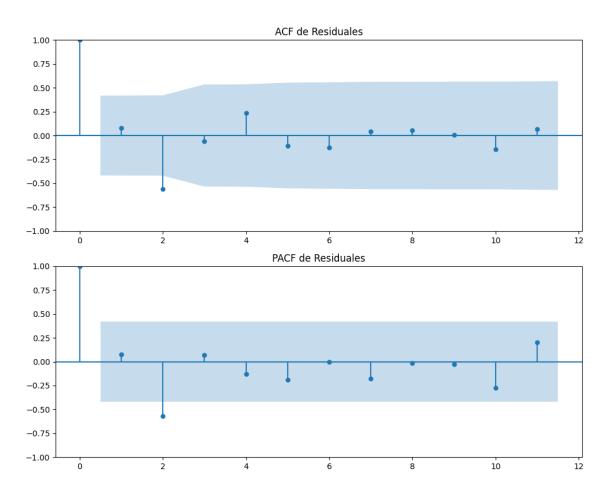
Análisis de Error Aleatorio para Ahora_Repúblicas

Estadística de Durbin-Watson: 0.0002

Prueba de Ljung-Box:

Estadísticos: 82.8945, p-valor: 0.0000


Prueba de Shapiro-Wilk: Estadístico=0.9613, p-valor=0.0582


Prueba de Dickey-Fuller aumentada: p-valor=0.0129

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

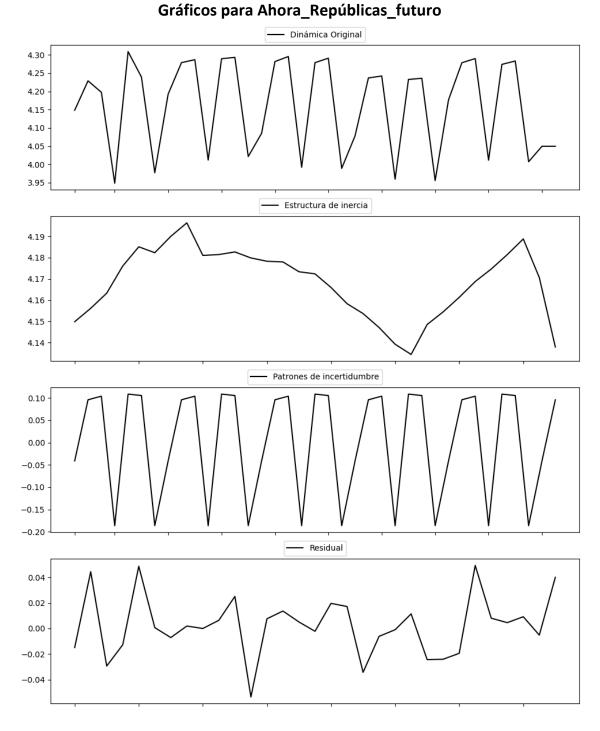
3.1. Análisis de la Dinámica de Inercia Pasada para Ahora_Repúblicas

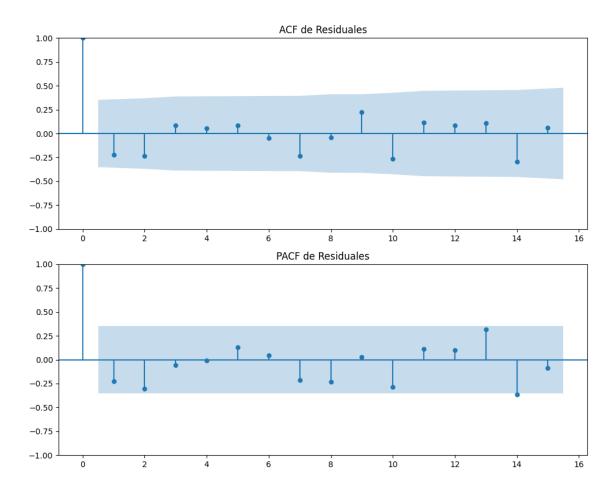
Análisis de Error Aleatorio para Ahora_Repúblicas_pasado

Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 12.0538, p-valor: 0.2815


Prueba de Shapiro-Wilk: Estadístico=0.9785, p-valor=0.8914


Prueba de Dickey-Fuller aumentada: p-valor=0.0034

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

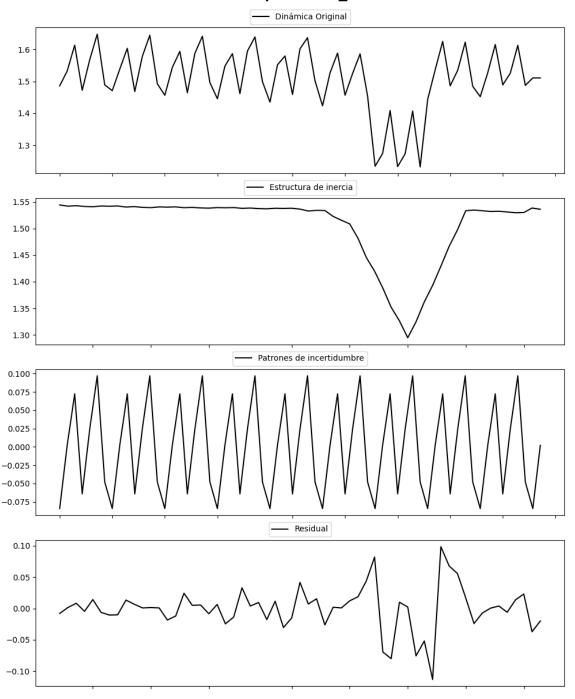
3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Ahora_Repúblicas

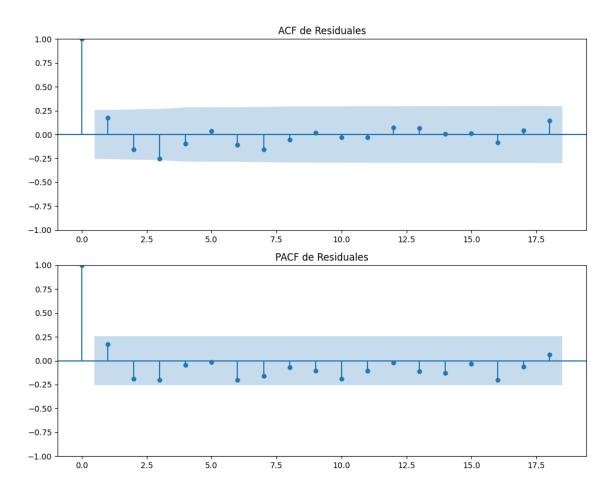
Análisis de Error Aleatorio para Ahora_Repúblicas_futuro

Estadística de Durbin-Watson: 2.3205

Prueba de Ljung-Box:

Estadísticos: 12.6789, p-valor: 0.2422


Prueba de Shapiro-Wilk: Estadístico=0.9711, p-valor=0.5503


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para Junts_UE

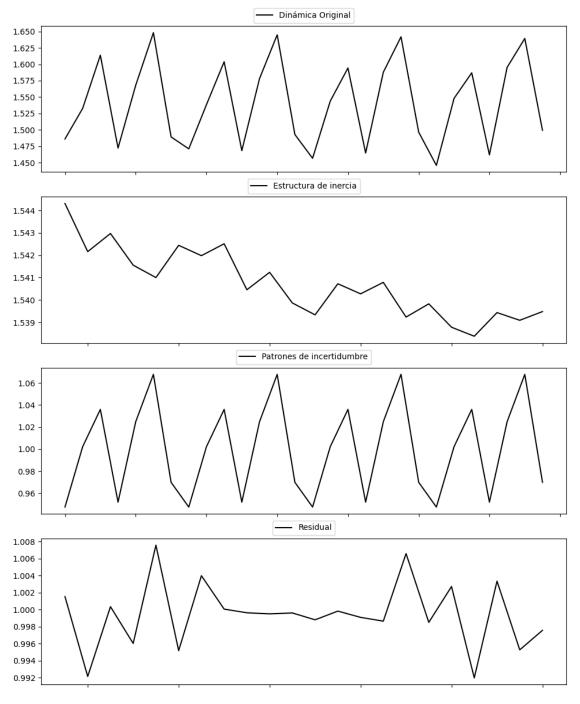
Análisis de Error Aleatorio para Junts_UE

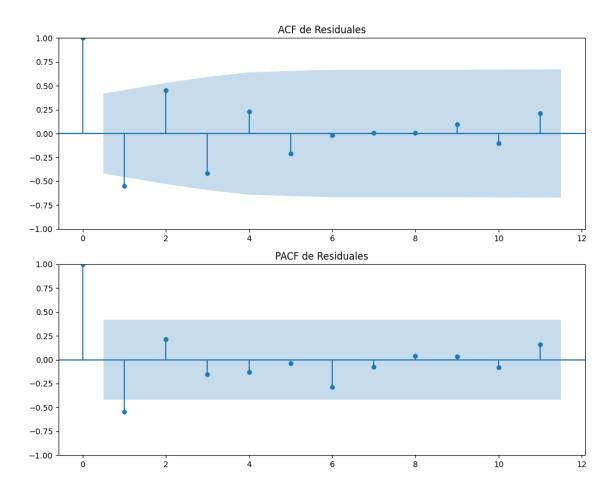
Estadística de Durbin-Watson: 1.6469

Prueba de Ljung-Box:

Estadísticos: 10.9503, p-valor: 0.3614

Prueba de Shapiro-Wilk: Estadístico=0.9214, p-valor=0.0010


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

3.1. Análisis de la Dinámica de Inercia Pasada para Junts_UE

Gráficos para Junts_UE_pasado

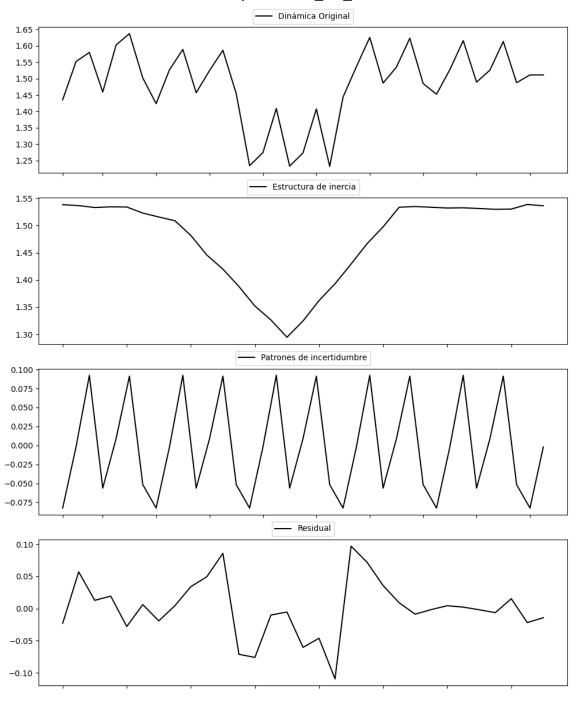
Análisis de Error Aleatorio para Junts_UE_pasado

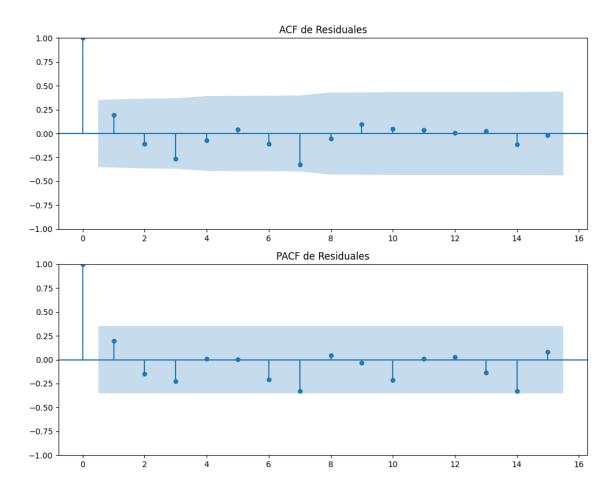
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 21.4951, p-valor: 0.0179

Prueba de Shapiro-Wilk: Estadístico=0.9651, p-valor=0.5986


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Junts_UE

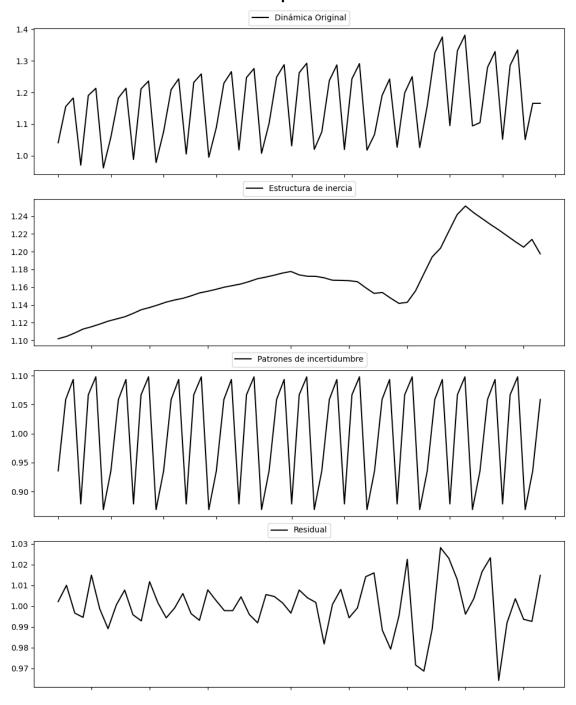
Gráficos para Junts_UE_futuro

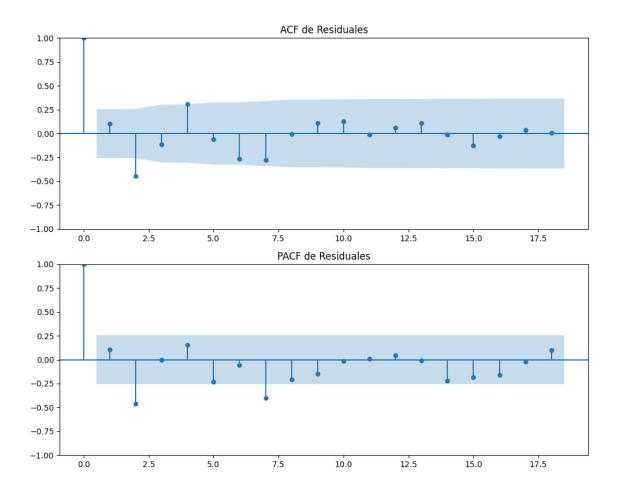
Análisis de Error Aleatorio para Junts_UE_futuro

Estadística de Durbin-Watson: 1.5957

Prueba de Ljung-Box:

Estadísticos: 10.3123, p-valor: 0.4135


Prueba de Shapiro-Wilk: Estadístico=0.9715, p-valor=0.5598


Prueba de Dickey-Fuller aumentada: p-valor=0.0004

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para Ceus

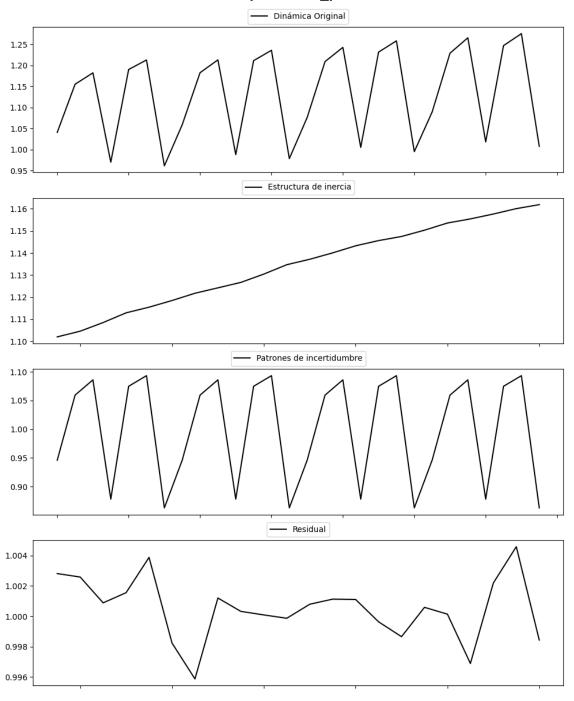
Análisis de Error Aleatorio para Ceus

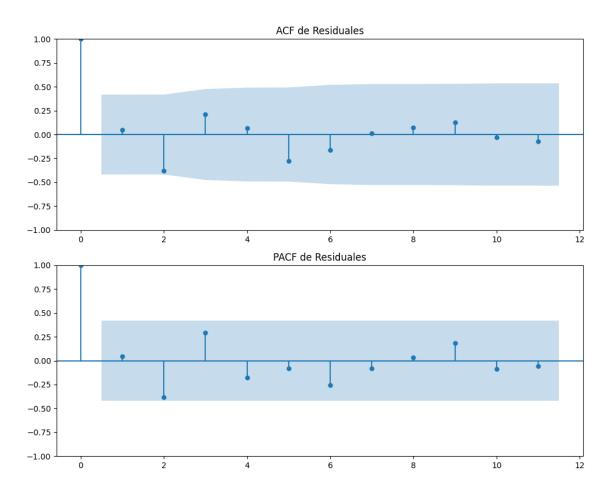
Estadística de Durbin-Watson: 0.0003

Prueba de Ljung-Box:

Estadísticos: 32.7123, p-valor: 0.0003

Prueba de Shapiro-Wilk: Estadístico=0.9643, p-valor=0.0807


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.1. Análisis de la Dinámica de Inercia Pasada para Ceus

Gráficos para Ceus_pasado

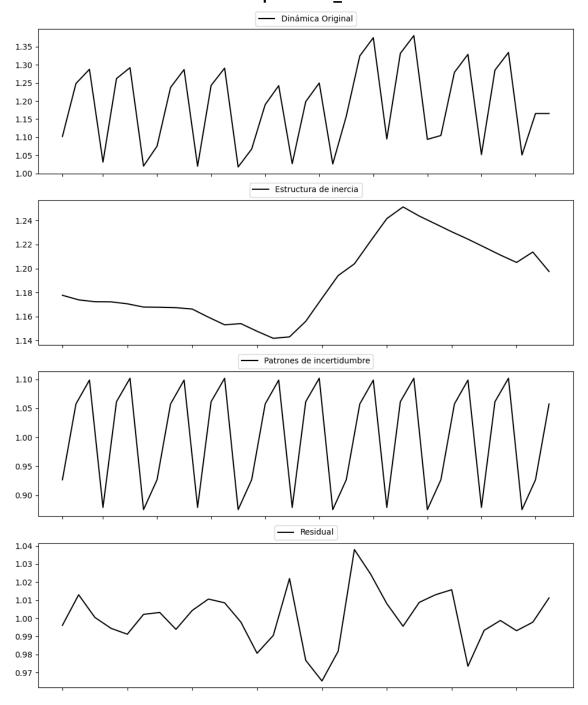
Análisis de Error Aleatorio para Ceus_pasado

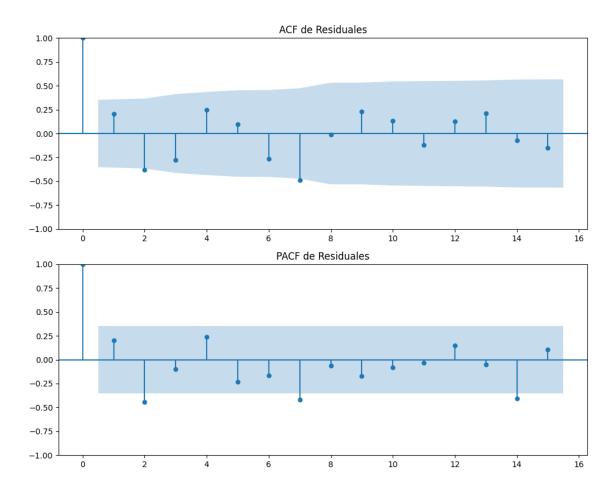
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 9.3994, p-valor: 0.4947

Prueba de Shapiro-Wilk: Estadístico=0.9807, p-valor=0.9260


Prueba de Dickey-Fuller aumentada: p-valor=0.5061


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Ceus

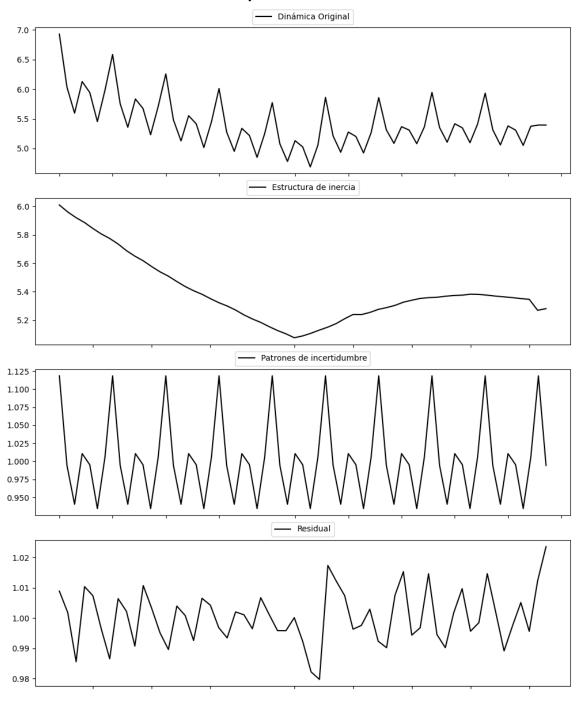
Gráficos para Ceus_futuro

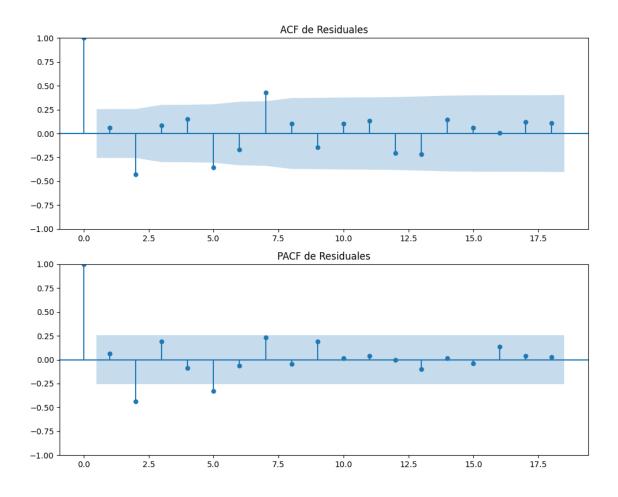
Análisis de Error Aleatorio para Ceus_futuro

Estadística de Durbin-Watson: 0.0004

Prueba de Ljung-Box:

Estadísticos: 28.4150, p-valor: 0.0015


Prueba de Shapiro-Wilk: Estadístico=0.9856, p-valor=0.9420


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

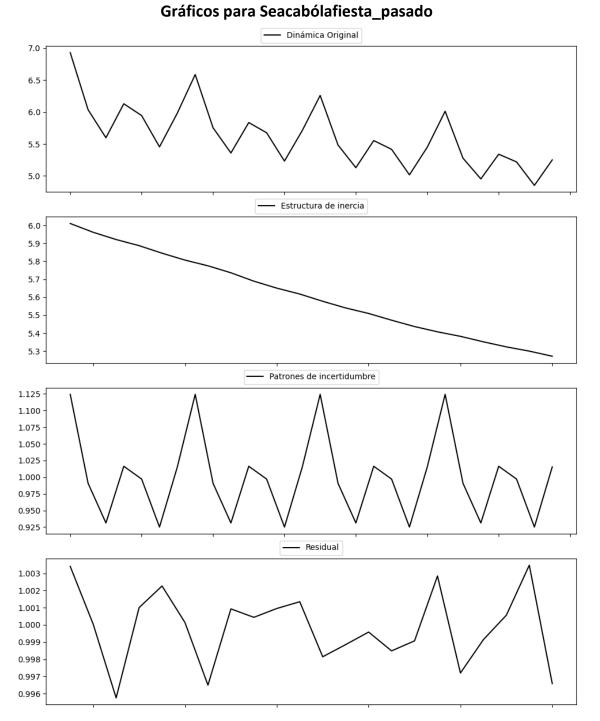
Gráficos para Seacabólafiesta

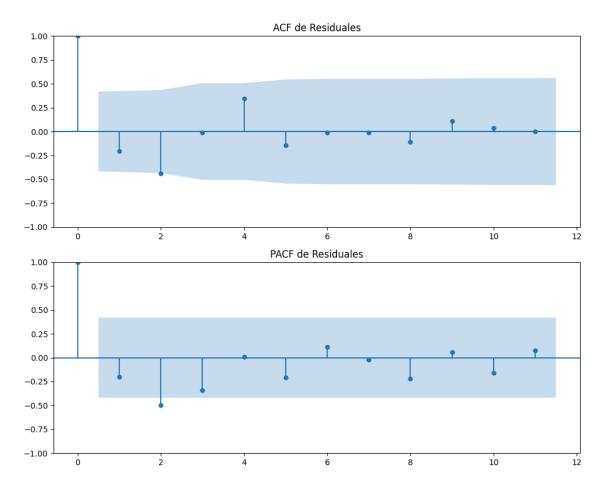
Análisis de Error Aleatorio para Seacabólafiesta

Estadística de Durbin-Watson: 0.0001

Prueba de Ljung-Box:

Estadísticos: 39.9945, p-valor: 0.0000


Prueba de Shapiro-Wilk: Estadístico=0.9931, p-valor=0.9839


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.1. Análisis de la Dinámica de Inercia Pasada para Seacabólafiesta

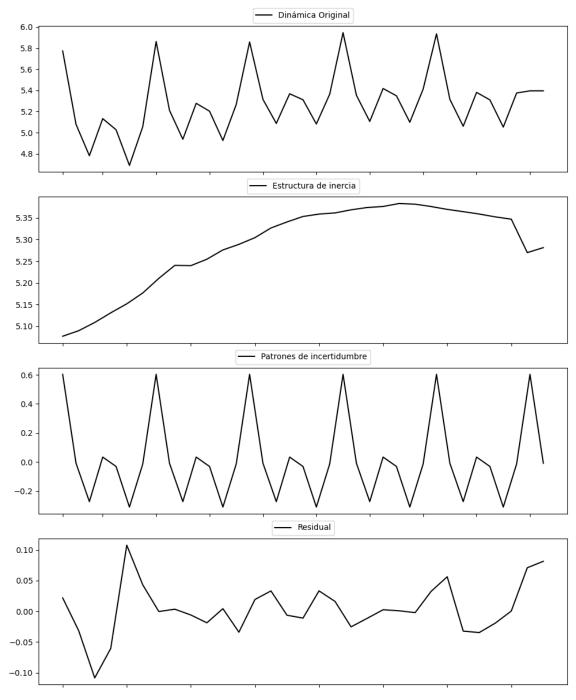
Análisis de Error Aleatorio para Seacabólafiesta_pasado

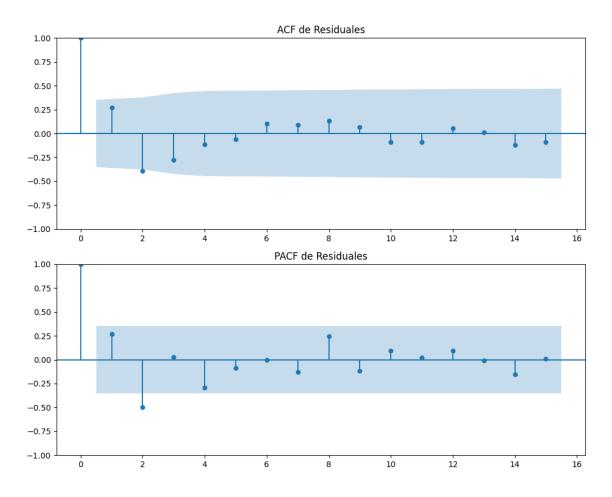
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 11.1896, p-valor: 0.3429

Prueba de Shapiro-Wilk: Estadístico=0.9715, p-valor=0.7466


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Seacabólafiesta

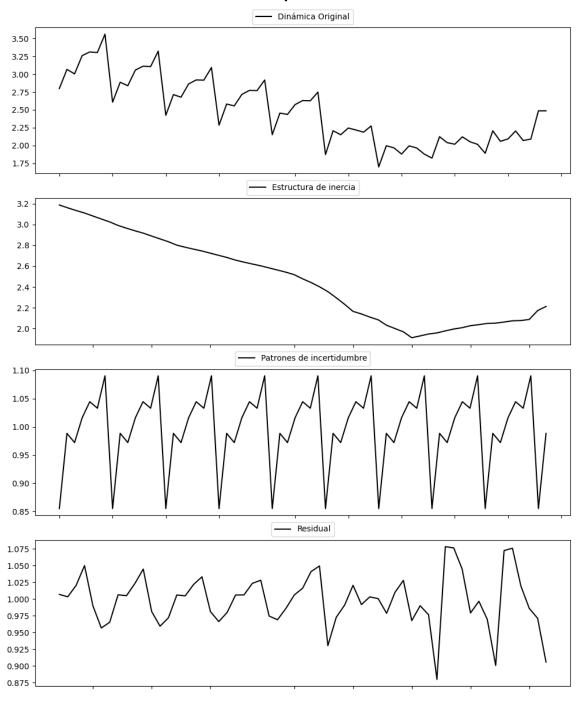
Gráficos para Seacabólafiesta_futuro

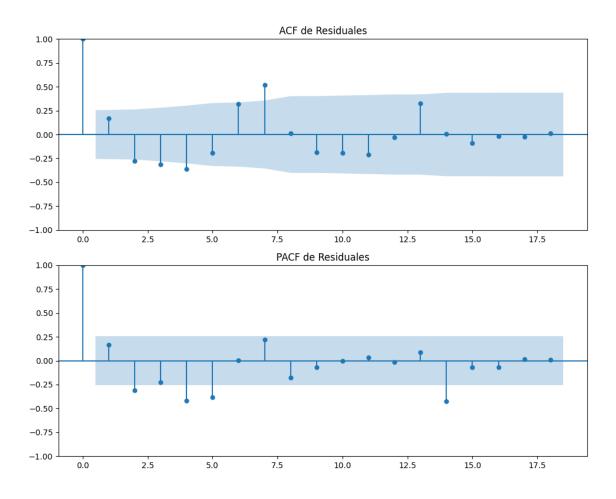
Análisis de Error Aleatorio para Seacabólafiesta_futuro

Estadística de Durbin-Watson: 1.3280

Prueba de Ljung-Box:

Estadísticos: 13.4716, p-valor: 0.1985


Prueba de Shapiro-Wilk: Estadístico=0.9654, p-valor=0.4019


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para Otros

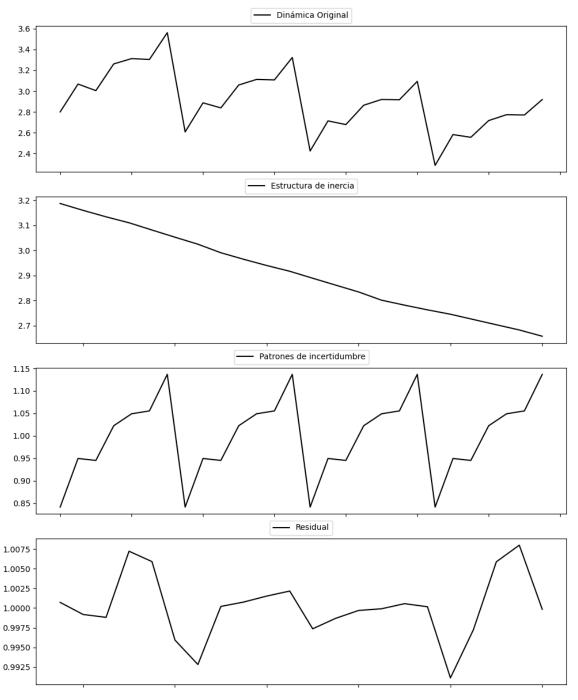
Análisis de Error Aleatorio para Otros

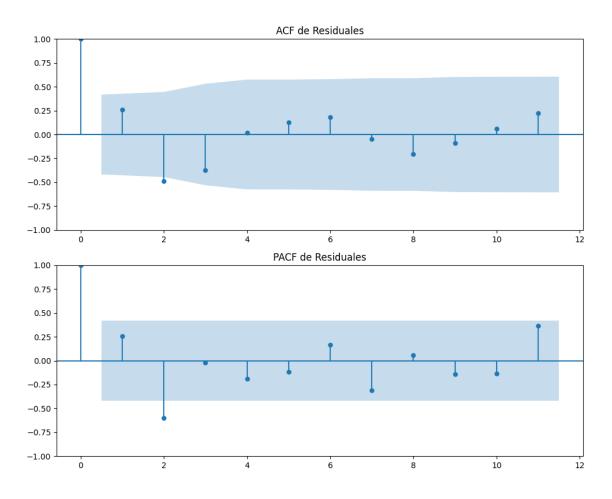
Estadística de Durbin-Watson: 0.0025

Prueba de Ljung-Box:

Estadísticos: 54.5409, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9604, p-valor=0.0525


Prueba de Dickey-Fuller aumentada: p-valor=0.0051


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.1. Análisis de la Dinámica de Inercia Pasada para Otros

Gráficos para Otros_pasado

Análisis de Error Aleatorio para Otros_pasado

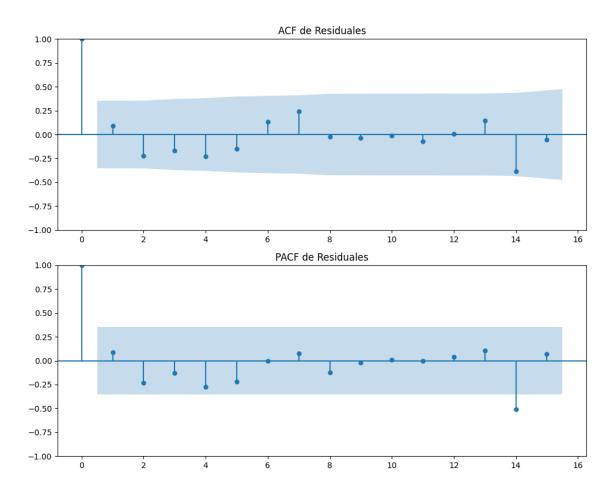
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 15.5648, p-valor: 0.1128

Prueba de Shapiro-Wilk: Estadístico=0.9424, p-valor=0.2216


Prueba de Dickey-Fuller aumentada: p-valor=0.0048


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Otros

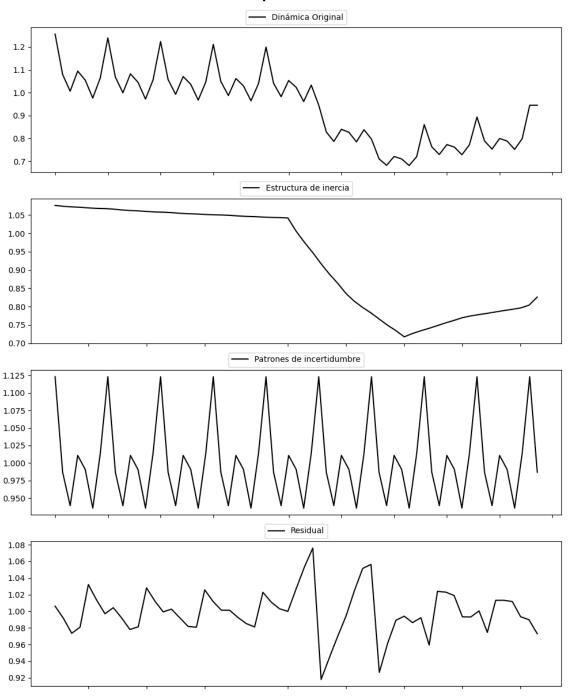
Gráficos para Otros_futuro

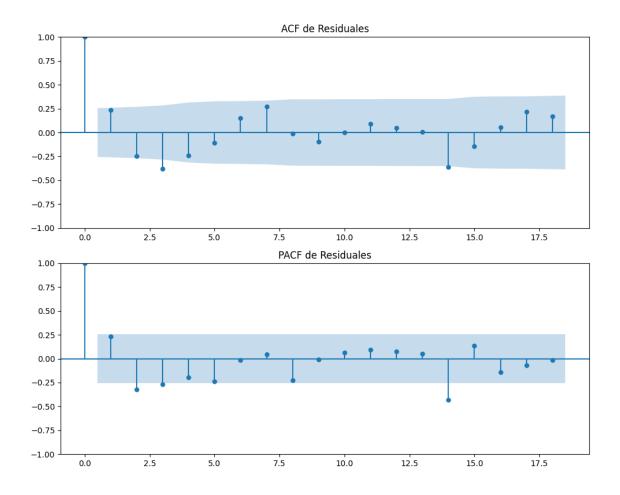
Análisis de Error Aleatorio para Otros_futuro

Estadística de Durbin-Watson: 0.0033

Prueba de Ljung-Box:

Estadísticos: 9.1817, p-valor: 0.5149


Prueba de Shapiro-Wilk: Estadístico=0.9794, p-valor=0.7957


Prueba de Dickey-Fuller aumentada: p-valor=0.0002

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para Enblanco

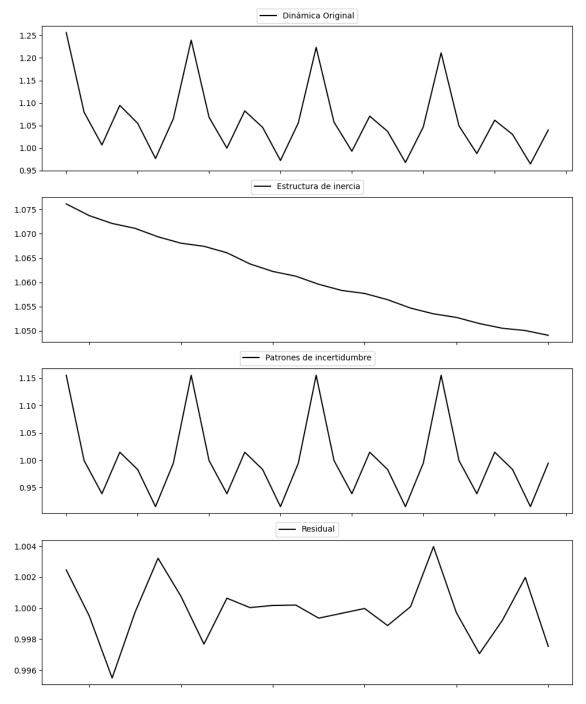
Análisis de Error Aleatorio para Enblanco

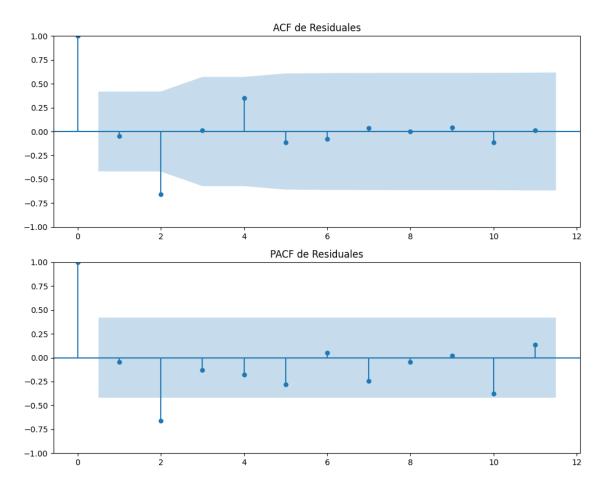
Estadística de Durbin-Watson: 0.0012

Prueba de Ljung-Box:

Estadísticos: 28.4664, p-valor: 0.0015

Prueba de Shapiro-Wilk: Estadístico=0.9666, p-valor=0.1042


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.1. Análisis de la Dinámica de Inercia Pasada para Enblanco

Gráficos para Enblanco_pasado

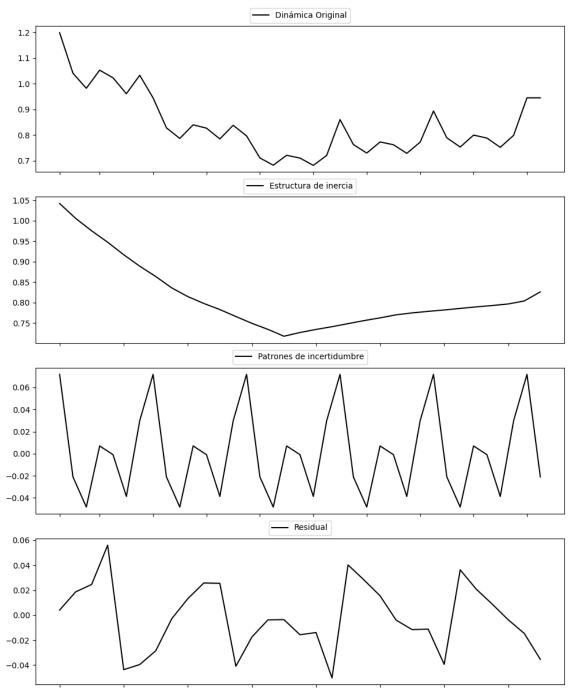
Análisis de Error Aleatorio para Enblanco_pasado

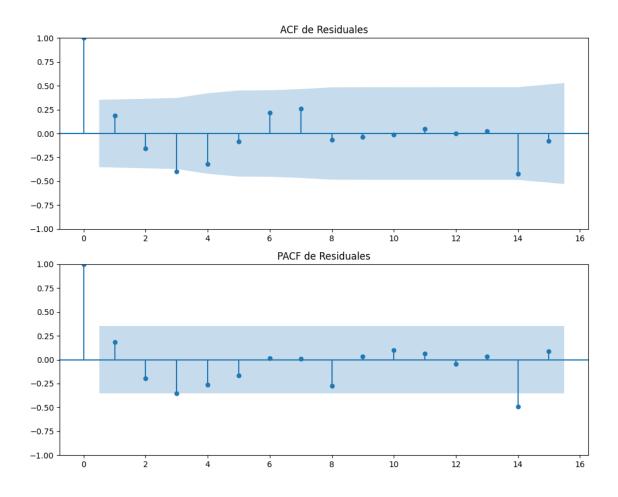
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 16.3718, p-valor: 0.0895

Prueba de Shapiro-Wilk: Estadístico=0.9574, p-valor=0.4390


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

3.2. Análisis de la Dinámica de Inercia Presente_Futuro para Enblanco

Gráficos para Enblanco_futuro

Análisis de Error Aleatorio para Enblanco_futuro

Estadística de Durbin-Watson: 1.5698

Prueba de Ljung-Box:

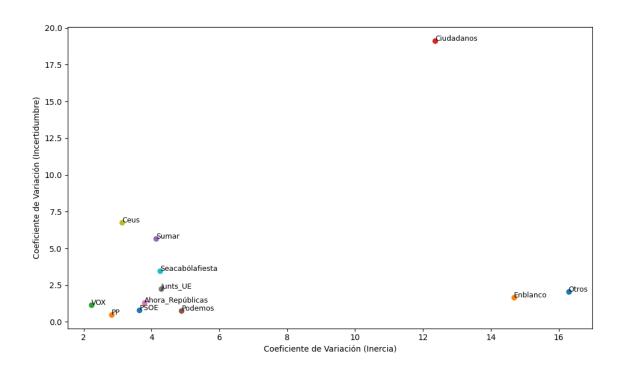
Estadísticos: 17.0715, p-valor: 0.0728

Prueba de Shapiro-Wilk: Estadístico=0.9733, p-valor=0.6148

Prueba de Dickey-Fuller aumentada: p-valor=0.0006

Estacionariedad: Estacionario

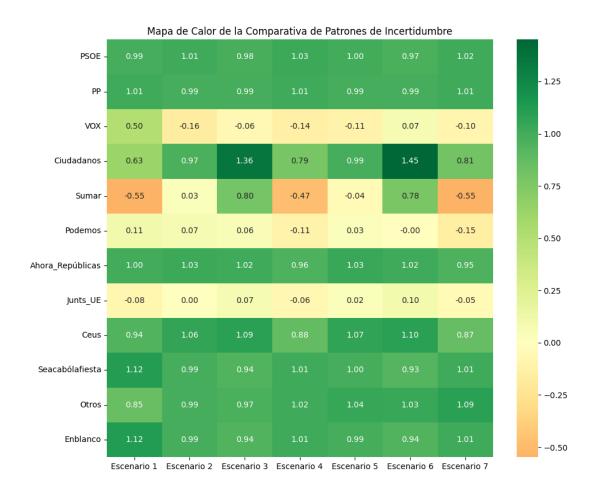
No se detectó heterocedasticidad significativa en los residuos.

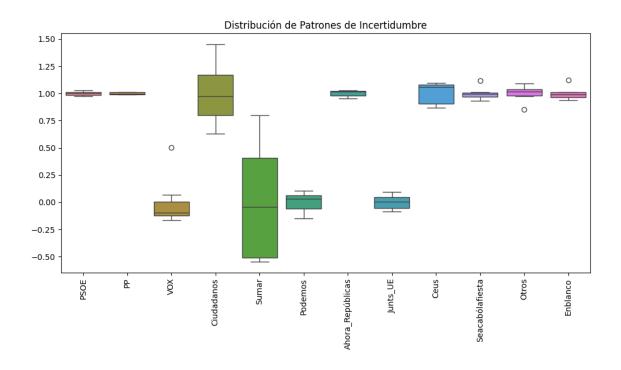

Interacción de la estructura de inercia y los patrones de incertidumbre

Escenarios	Tipo de	AIC	BIC	AIC	BIC	Inercia del
	Patrón	Aditivo	Aditivo	Multiplicativo	Multiplicativo	patrón
				_	_	(Multiplicativa)
PSOE	Multiplicative	-136.64	-117.08	-137.63	-118.06	Creciente
PP	Multiplicative	-187.18	-167.61	-187.86	-168.29	Creciente
VOX	Additive	-240.20	-220.63	-239.60	-220.04	N/A
Ciudadanos	Multiplicative	-353.92	-334.35	-366.11	-346.54	Decreciente
Sumar	Additive	-277.74	-258.17	-271.18	-251.61	N/A
Podemos	Additive	-338.82	-319.25	-336.71	-317.14	N/A
Ahora_Repúblicas	Multiplicative	-378.46	-358.89	-379.29	-359.72	Decreciente
Junts_UE	Additive	-380.05	-360.48	-379.75	-360.18	N/A
Ceus	Multiplicative	-455.85	-436.28	-460.63	-441.07	Decreciente
Seacabólafiesta	Multiplicative	-276.82	-257.26	-277.44	-257.87	Decreciente
Otros	Multiplicative	-256.25	-236.69	-268.64	-249.07	Creciente
Enblanco	Multiplicative	-395.40	-375.83	-405.11	-385.55	Decreciente

Tabla de Coeficiente de Variación (CV)

Partido	CV	Homogeneidad	CV	Homogeneidad	CV	Homogeneidad
	(Inercia)	(Inercia)	(Incertidumbre)	(Incertidumbre)	(Estimación)	(Estimación)
PSOE	3.65	Homogéneo	0.80	Homogéneo	4.44	Homogéneo
PP	2.83	Homogéneo	0.49	Homogéneo	3.32	Homogéneo
VOX	2.23	Homogéneo	1.17	Homogéneo	3.40	Homogéneo
Ciudadanos	12.35	Homogéneo	19.14	Homogéneo	31.49	No
		_		-		Homogéneo
Sumar	4.13	Homogéneo	5.66	Homogéneo	9.79	Homogéneo
Podemos	4.88	Homogéneo	0.78	Homogéneo	5.66	Homogéneo
Ahora_Repúblicas	3.79	Homogéneo	1.33	Homogéneo	5.12	Homogéneo
Junts_UE	4.28	Homogéneo	2.27	Homogéneo	6.55	Homogéneo
Ceus	3.14	Homogéneo	6.78	Homogéneo	9.91	Homogéneo
Seacabólafiesta	4.26	Homogéneo	3.47	Homogéneo	7.72	Homogéneo
Otros	16.29	Homogéneo	2.07	Homogéneo	18.36	Homogéneo
Enblanco	14.68	Homogéneo	1.67	Homogéneo	16.35	Homogéneo

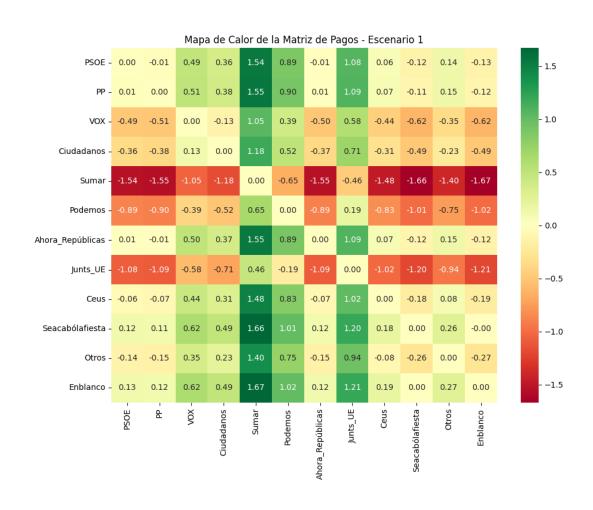

Comparación de Coeficientes de Variación


Tabla Comparativa de Patrones de Incertidumbre

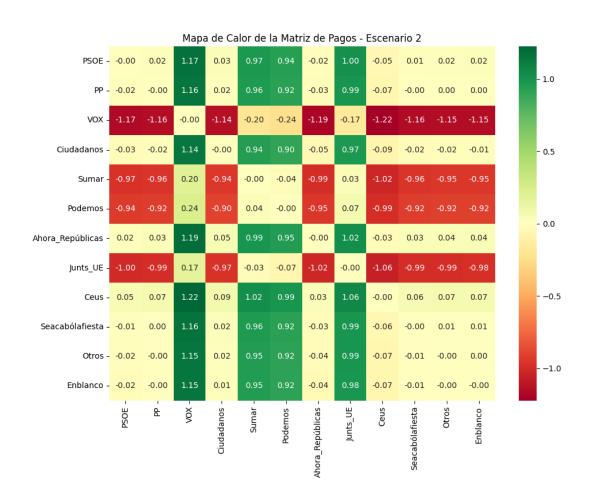
Partido	Escenari						
	o 1	o 2	o 3	o 4	o 5	o 6	o 7
PSOE	0.99	1.01	0.98	1.03	1.00	0.97	1.02
PP	1.01	0.99	0.99	1.01	0.99	0.99	1.01
VOX	0.50	-0.16	-0.06	-0.14	-0.11	0.07	-0.10
Ciudadanos	0.63	0.97	1.36	0.79	0.99	1.45	0.81
Sumar	-0.55	0.03	0.80	-0.47	-0.04	0.78	-0.55
Podemos	0.11	0.07	0.06	-0.11	0.03	-0.00	-0.15
Ahora_República	1.00	1.03	1.02	0.96	1.03	1.02	0.95
S							
Junts_UE	-0.08	0.00	0.07	-0.06	0.02	0.10	-0.05
Ceus	0.94	1.06	1.09	0.88	1.07	1.10	0.87
Seacabólafiesta	1.12	0.99	0.94	1.01	1.00	0.93	1.01
Otros	0.85	0.99	0.97	1.02	1.04	1.03	1.09
Enblanco	1.12	0.99	0.94	1.01	0.99	0.94	1.01

Mapa de Calor Comparativa de Patrones de Incertidumbre

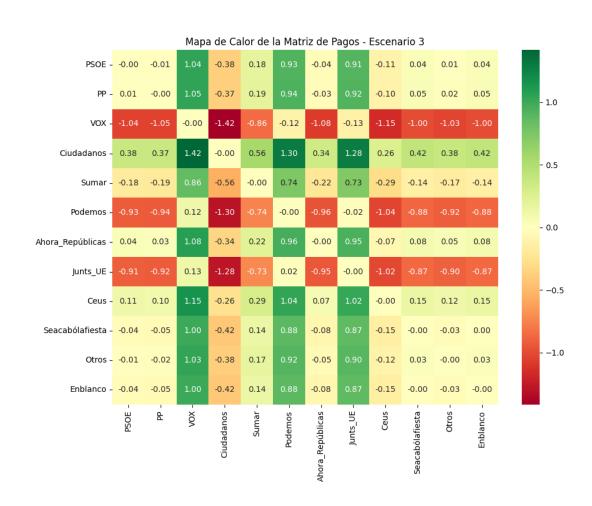
Boxplot de la Distribución de Patrones de Incertidumbre

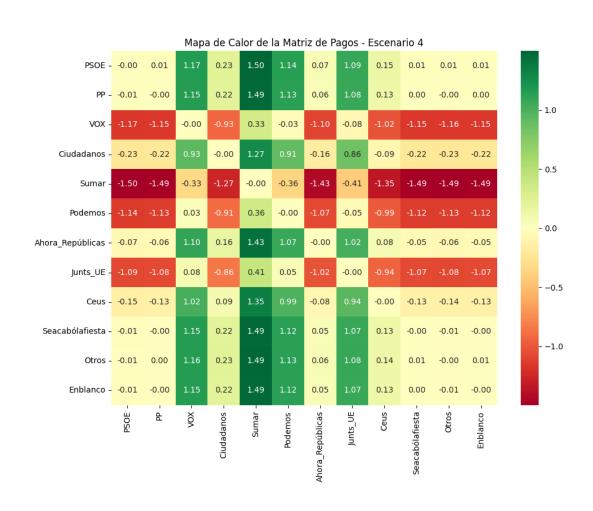


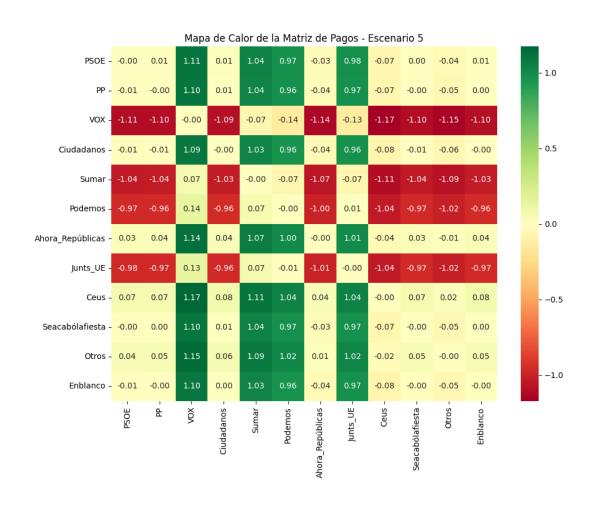
Máximos y Mínimos de los patrones medios de incertidumbre por Partido

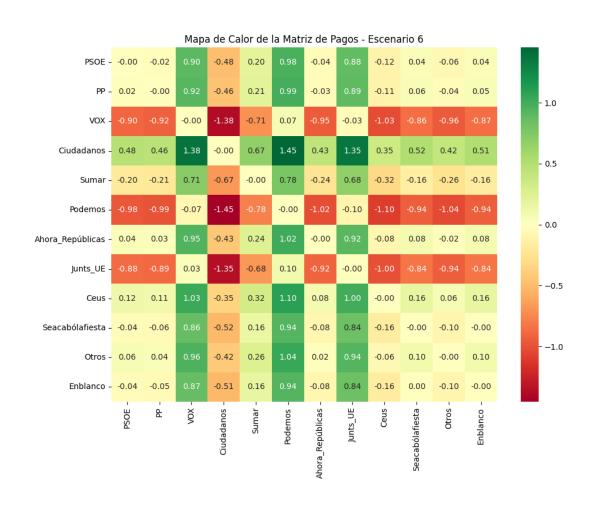

Partido	Máximo	Escenario	Mínimo	Escenario
		Máximo		Mínimo
PSOE	1.03	Escenario 4	0.97	Escenario 6
PP	1.01	Escenario 7	0.99	Escenario 6
VOX	0.50	Escenario 1	-0.16	Escenario 2
Ciudadanos	1.45	Escenario 6	0.63	Escenario 1
Sumar	0.80	Escenario 3	-0.55	Escenario 7
Podemos	0.11	Escenario 1	-0.15	Escenario 7
Ahora_Repúblicas	1.03	Escenario 5	0.95	Escenario 7
Junts_UE	0.10	Escenario 6	-0.08	Escenario 1
Ceus	1.10	Escenario 6	0.87	Escenario 7
Seacabólafiesta	1.12	Escenario 1	0.93	Escenario 6
Otros	1.09	Escenario 7	0.85	Escenario 1
Enblanco	1.12	Escenario 1	0.94	Escenario 6

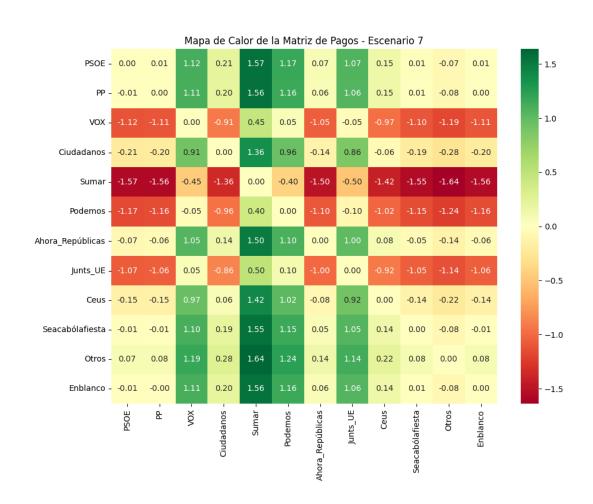
4. Matrices de pago entre partidos según patrones medios de incertidumbre


	PSOE	PP	VOX	Ciudadanos	Sumar	Podemos	Ahora_Repúblicas	Junts_UE	Ceus	Seacabólafiesta	Otros	Enblanco
PSOE	0.00	- 0.01	0.49	0.36	1.54	0.89	-0.01	1.08	0.06	-0.12	0.14	-0.13
PP	0.01	0.00	0.51	0.38	1.55	0.90	0.01	1.09	0.07	-0.11	0.15	-0.12
VOX	-0.49	- 0.51	0.00	-0.13	1.05	0.39	-0.50	0.58	-0.44	-0.62	-0.35	-0.62
Ciudadanos	-0.36	0.38	0.13	0.00	1.18	0.52	-0.37	0.71	-0.31	-0.49	-0.23	-0.49
Sumar	-1.54	1.55	-1.05	-1.18	0.00	-0.65	-1.55	-0.46	-1.48	-1.66	-1.40	-1.67
Podemos	-0.89	- 0.90	-0.39	-0.52	0.65	0.00	-0.89	0.19	-0.83	-1.01	-0.75	-1.02
Ahora_Repúblicas	0.01	0.01	0.50	0.37	1.55	0.89	0.00	1.09	0.07	-0.12	0.15	-0.12
Junts_UE	-1.08	1.09	-0.58	-0.71	0.46	-0.19	-1.09	0.00	-1.02	-1.20	-0.94	-1.21
Ceus	-0.06	0.07	0.44	0.31	1.48	0.83	-0.07	1.02	0.00	-0.18	0.08	-0.19
Seacabólafiesta	0.12	0.11	0.62	0.49	1.66	1.01	0.12	1.20	0.18	0.00	0.26	-0.00
Otros	-0.14	0.15	0.35	0.23	1.40	0.75	-0.15	0.94	-0.08	-0.26	0.00	-0.27
Enblanco	0.13	0.12	0.62	0.49	1.67	1.02	0.12	1.21	0.19	0.00	0.27	0.00


	PSOE	PP	VOX	Ciudadanos	Sumar	Podemos	Ahora_Repúblicas	Junts_UE	Ceus	Seacabólafiesta	Otros	Enblanco
PSOE	-0.00	0.02	1.17	0.03	0.97	0.94	-0.02	1.00	-0.05	0.01	0.02	0.02
PP	-0.02	0.00	1.16	0.02	0.96	0.92	-0.03	0.99	-0.07	-0.00	0.00	0.00
VOX	-1.17	- 1.16	-0.00	-1.14	-0.20	-0.24	-1.19	-0.17	-1.22	-1.16	-1.15	-1.15
Ciudadanos	-0.03	0.02	1.14	-0.00	0.94	0.90	-0.05	0.97	-0.09	-0.02	-0.02	-0.01
Sumar	-0.97	- 0.96	0.20	-0.94	-0.00	-0.04	-0.99	0.03	-1.02	-0.96	-0.95	-0.95
Podemos	-0.94	0.92	0.24	-0.90	0.04	-0.00	-0.95	0.07	-0.99	-0.92	-0.92	-0.92
Ahora_Repúblicas	0.02	0.03	1.19	0.05	0.99	0.95	-0.00	1.02	-0.03	0.03	0.04	0.04
Junts_UE	-1.00	- 0.99	0.17	-0.97	-0.03	-0.07	-1.02	-0.00	-1.06	-0.99	-0.99	-0.98
Ceus	0.05	0.07	1.22	0.09	1.02	0.99	0.03	1.06	-0.00	0.06	0.07	0.07
Seacabólafiesta	-0.01	0.00	1.16	0.02	0.96	0.92	-0.03	0.99	-0.06	-0.00	0.01	0.01
Otros	-0.02	0.00	1.15	0.02	0.95	0.92	-0.04	0.99	-0.07	-0.01	-0.00	0.00
Enblanco	-0.02	0.00	1.15	0.01	0.95	0.92	-0.04	0.98	-0.07	-0.01	-0.00	-0.00


	PSOE	PP	VOX	Ciudadanos	Sumar	Podemos	Ahora_Repúblicas	Junts_UE	Ceus	Seacabólafiesta	Otros	Enblanco
PSOE	-0.00	- 0.01	1.04	-0.38	0.18	0.93	-0.04	0.91	-0.11	0.04	0.01	0.04
PP	0.01	0.00	1.05	-0.37	0.19	0.94	-0.03	0.92	-0.10	0.05	0.02	0.05
VOX	-1.04	1.05	-0.00	-1.42	-0.86	-0.12	-1.08	-0.13	-1.15	-1.00	-1.03	-1.00
Ciudadanos	0.38	0.37	1.42	-0.00	0.56	1.30	0.34	1.28	0.26	0.42	0.38	0.42
Sumar	-0.18	0.19	0.86	-0.56	-0.00	0.74	-0.22	0.73	-0.29	-0.14	-0.17	-0.14
Podemos	-0.93	- 0.94	0.12	-1.30	-0.74	-0.00	-0.96	-0.02	-1.04	-0.88	-0.92	-0.88
Ahora_Repúblicas	0.04	0.03	1.08	-0.34	0.22	0.96	-0.00	0.95	-0.07	0.08	0.05	0.08
Junts_UE	-0.91	0.92	0.13	-1.28	-0.73	0.02	-0.95	-0.00	-1.02	-0.87	-0.90	-0.87
Ceus	0.11	0.10	1.15	-0.26	0.29	1.04	0.07	1.02	-0.00	0.15	0.12	0.15
Seacabólafiesta	-0.04	0.05	1.00	-0.42	0.14	0.88	-0.08	0.87	-0.15	-0.00	-0.03	0.00
Otros	-0.01	0.02	1.03	-0.38	0.17	0.92	-0.05	0.90	-0.12	0.03	-0.00	0.03
Enblanco	-0.04	0.05	1.00	-0.42	0.14	0.88	-0.08	0.87	-0.15	-0.00	-0.03	-0.00


	PSOE	PP	VOX	Ciudadanos	Sumar	Podemos	Ahora_Repúblicas	Junts_UE	Ceus	Seacabólafiesta	Otros	Enblanco
PSOE	-0.00	0.01	1.17	0.23	1.50	1.14	0.07	1.09	0.15	0.01	0.01	0.01
PP	-0.01	0.00	1.15	0.22	1.49	1.13	0.06	1.08	0.13	0.00	-0.00	0.00
VOX	-1.17	- 1.15	-0.00	-0.93	0.33	-0.03	-1.10	-0.08	-1.02	-1.15	-1.16	-1.15
Ciudadanos	-0.23	0.22	0.93	-0.00	1.27	0.91	-0.16	0.86	-0.09	-0.22	-0.23	-0.22
Sumar	-1.50	- 1.49	-0.33	-1.27	-0.00	-0.36	-1.43	-0.41	-1.35	-1.49	-1.49	-1.49
Podemos	-1.14	1.13	0.03	-0.91	0.36	-0.00	-1.07	-0.05	-0.99	-1.12	-1.13	-1.12
Ahora_Repúblicas	-0.07	0.06	1.10	0.16	1.43	1.07	-0.00	1.02	0.08	-0.05	-0.06	-0.05
Junts_UE	-1.09	1.08	0.08	-0.86	0.41	0.05	-1.02	-0.00	-0.94	-1.07	-1.08	-1.07
Ceus	-0.15	0.13	1.02	0.09	1.35	0.99	-0.08	0.94	-0.00	-0.13	-0.14	-0.13
Seacabólafiesta	-0.01	0.00	1.15	0.22	1.49	1.12	0.05	1.07	0.13	-0.00	-0.01	-0.00
Otros	-0.01	0.00	1.16	0.23	1.49	1.13	0.06	1.08	0.14	0.01	-0.00	0.01
Enblanco	-0.01	0.00	1.15	0.22	1.49	1.12	0.05	1.07	0.13	0.00	-0.01	-0.00


	PSOE	PP	VOX	Ciudadanos	Sumar	Podemos	Ahora_Repúblicas	Junts_UE	Ceus	Seacabólafiesta	Otros	Enblanco
PSOE	-0.00	0.01	1.11	0.01	1.04	0.97	-0.03	0.98	-0.07	0.00	-0.04	0.01
PP	-0.01	0.00	1.10	0.01	1.04	0.96	-0.04	0.97	-0.07	-0.00	-0.05	0.00
VOX	-1.11	1.10	-0.00	-1.09	-0.07	-0.14	-1.14	-0.13	-1.17	-1.10	-1.15	-1.10
Ciudadanos	-0.01	0.01	1.09	-0.00	1.03	0.96	-0.04	0.96	-0.08	-0.01	-0.06	-0.00
Sumar	-1.04	1.04	0.07	-1.03	-0.00	-0.07	-1.07	-0.07	-1.11	-1.04	-1.09	-1.03
Podemos	-0.97	- 0.96	0.14	-0.96	0.07	-0.00	-1.00	0.01	-1.04	-0.97	-1.02	-0.96
Ahora_Repúblicas	0.03	0.04	1.14	0.04	1.07	1.00	-0.00	1.01	-0.04	0.03	-0.01	0.04
Junts_UE	-0.98	- 0.97	0.13	-0.96	0.07	-0.01	-1.01	-0.00	-1.04	-0.97	-1.02	-0.97
Ceus	0.07	0.07	1.17	0.08	1.11	1.04	0.04	1.04	-0.00	0.07	0.02	0.08
Seacabólafiesta	-0.00	0.00	1.10	0.01	1.04	0.97	-0.03	0.97	-0.07	-0.00	-0.05	0.00
Otros	0.04	0.05	1.15	0.06	1.09	1.02	0.01	1.02	-0.02	0.05	-0.00	0.05
Enblanco	-0.01	0.00	1.10	0.00	1.03	0.96	-0.04	0.97	-0.08	-0.00	-0.05	-0.00

	PSOE	PP	VOX	Ciudadanos	Sumar	Podemos	Ahora_Repúblicas	Junts_UE	Ceus	Seacabólafiesta	Otros	Enblanco
PSOE	-0.00	- 0.02	0.90	-0.48	0.20	0.98	-0.04	0.88	-0.12	0.04	-0.06	0.04
PP	0.02	0.00	0.92	-0.46	0.21	0.99	-0.03	0.89	-0.11	0.06	-0.04	0.05
VOX	-0.90	0.92	-0.00	-1.38	-0.71	0.07	-0.95	-0.03	-1.03	-0.86	-0.96	-0.87
Ciudadanos	0.48	0.46	1.38	-0.00	0.67	1.45	0.43	1.35	0.35	0.52	0.42	0.51
Sumar	-0.20	0.21	0.71	-0.67	-0.00	0.78	-0.24	0.68	-0.32	-0.16	-0.26	-0.16
Podemos	-0.98	- 0.99	-0.07	-1.45	-0.78	-0.00	-1.02	-0.10	-1.10	-0.94	-1.04	-0.94
Ahora_Repúblicas	0.04	0.03	0.95	-0.43	0.24	1.02	-0.00	0.92	-0.08	0.08	-0.02	0.08
Junts_UE	-0.88	- 0.89	0.03	-1.35	-0.68	0.10	-0.92	-0.00	-1.00	-0.84	-0.94	-0.84
Ceus	0.12	0.11	1.03	-0.35	0.32	1.10	0.08	1.00	-0.00	0.16	0.06	0.16
Seacabólafiesta	-0.04	- 0.06	0.86	-0.52	0.16	0.94	-0.08	0.84	-0.16	-0.00	-0.10	-0.00
Otros	0.06	0.04	0.96	-0.42	0.26	1.04	0.02	0.94	-0.06	0.10	-0.00	0.10
Enblanco	-0.04	0.05	0.87	-0.51	0.16	0.94	-0.08	0.84	-0.16	0.00	-0.10	-0.00

	PSOE	PP	VOX	Ciudadanos	Sumar	Podemos	Ahora_Repúblicas	Junts_UE	Ceus	Seacabólafiesta	Otros	Enblanco
PSOE	0.00	0.01	1.12	0.21	1.57	1.17	0.07	1.07	0.15	0.01	-0.07	0.01
PP	-0.01	0.00	1.11	0.20	1.56	1.16	0.06	1.06	0.15	0.01	-0.08	0.00
VOX	-1.12	- 1.11	0.00	-0.91	0.45	0.05	-1.05	-0.05	-0.97	-1.10	-1.19	-1.11
Ciudadanos	-0.21	0.20	0.91	0.00	1.36	0.96	-0.14	0.86	-0.06	-0.19	-0.28	-0.20
Sumar	-1.57	- 1.56	-0.45	-1.36	0.00	-0.40	-1.50	-0.50	-1.42	-1.55	-1.64	-1.56
Podemos	-1.17	- 1.16	-0.05	-0.96	0.40	0.00	-1.10	-0.10	-1.02	-1.15	-1.24	-1.16
Ahora_Repúblicas	-0.07	0.06	1.05	0.14	1.50	1.10	0.00	1.00	0.08	-0.05	-0.14	-0.06
Junts_UE	-1.07	1.06	0.05	-0.86	0.50	0.10	-1.00	0.00	-0.92	-1.05	-1.14	-1.06
Ceus	-0.15	0.15	0.97	0.06	1.42	1.02	-0.08	0.92	0.00	-0.14	-0.22	-0.14
Seacabólafiesta	-0.01	0.01	1.10	0.19	1.55	1.15	0.05	1.05	0.14	0.00	-0.08	-0.01
Otros	0.07	0.08	1.19	0.28	1.64	1.24	0.14	1.14	0.22	0.08	0.00	0.08
Enblanco	-0.01	0.00	1.11	0.20	1.56	1.16	0.06	1.06	0.14	0.01	-0.08	0.00

5. Referencias

Alaminos, Antonio (2022) El método de escenarios en la estimación de resultados electorales. Una aplicación al caso de Castilla y León. Revista Española de Investigaciones Sociológicas 178: 173-182. https://doi.org/10.5477/cis/reis.178.173

Alaminos, A. (2017). La imagen de partido del Partido Popular y el Partido Socialista Obrero Español en España: 1996 al 2015. Sociologiados. Revista de Investigación Social. 2(1): 51-79. doi:10.14198/socdos.2017.1.04

Alaminos, Antonio (2015) Forecasting Elections with High Volatility. Statistica Applicata - Italian Journal of Applied Statistics. 2015, 25(2): 165-184 http://hdl.handle.net/10045/51768

Alaminos, Antonio (1998) Teoría y práctica de la encuesta. Aplicación en los países en vías de desarrollo. Alicante: Editorial Club Universitario, ISBN 84-95015-10-2. http://hdl.handle.net/10045/49236

Alaminos, Antonio (1998). Las predicciones electorales en España. En: Alaminos, Antonio, et al. Future Days. Modelos de prospectiva electoral. Alicante: Universidad de Alicante. ISBN 978-84-7908-407-3. http://hdl.handle.net/10045/105229

Alaminos, Antonio y Alaminos-Fernández, Antonio Fº (2024) Las elecciones autonómicas del País Vasco del 21 de abril de 2024. Modelo Bifactorial Inercia-Incertidumbre. Alicante: Obets Ciencia Abierta.

Alaminos-Fernández, Antonio F° y Alaminos, Antonio (2023) Métodos y Modelos para la Predicción Electoral: Una Guía Práctica. Obets Ciencia Abierta. Alicante: Limencop. ISBN: 978-84-09-50283-7. http://hdl.handle.net/10045/138240

Alaminos, Antonio y Alaminos-Fernández, Antonio Fº (2023) Modelo Bifactorial Inercia-Incertidumbre Alaminos-Tezanos. Aplicación al diagnóstico preelectoral y evaluación del impacto de campaña.: El caso de las elecciones autonómicas de mayo de 2023. Colección Cuadernos Metodológicos vol. 63. Madrid: Centro de Investigaciones Sociológicas

Alaminos, Antonio y Alaminos-Fernández, Antonio Fº (2023) Motivaciones de voto y estimación electoral en las elecciones generales en España. Un análisis empírico. Revista Sistema. 267, 3-37

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2021) Introducción práctica a la sociología electoral. Alicante: Obets Ciencia Abierta. ISBN 978-84-124165-4-1. http://hdl.handle.net/10045/119077

Alaminos, Antonio y Alaminos-Fernández, Antonio Fº (2016) La medición de las motivaciones de voto en las elecciones generales del 20 de diciembre de 2015. Alicante: Obets Ciencia Abierta. Universidad de Alicante, 119 p. http://hdl.handle.net/10045/132686

Alaminos, A. y Alaminos-Fernández, Antonio F° (2012) La medición de las motivaciones de voto en las elecciones generales del 20 de noviembre de 2011. Alicante: Obets Ciencia Abierta. Universidad de Alicante, 121 p. http://hdl.handle.net/10045/132566

Alaminos, Antonio y Alaminos-Fernández, Paloma (2018). Las dinámicas del voto retrospectivo en España (1996-2017). Tendencias sociales. Revista de Sociología, 1: 39-72

Alaminos, Antonio y Tezanos, José Félix (2023) Nota metodológica estimaciones de voto y escaños. Estudio E3411 preelectoral de elecciones generales. https://www.cis.es/documents/d/cis/3411_estimacion

Alaminos, Antonio y Tezanos, José Félix (2019) Nota metodológica estimaciones de voto y escaños. Modelo coyuntura CIS V89. Estudio nº 3261. Barómetro de septiembre 2019. https://datos.cis.es/pdf/3261_Estimacion.pdf

Alaminos, Antonio y Tezanos, José Félix (2019) Nota metodológica estimaciones de voto y escaños. Estudio nº 3263 Macrobarómetro Preelectoral elecciones generales 2019. https://datos.cis.es/pdf/3263_Estimacion.pdf

Alaminos, Antonio y Tezanos, José Félix (2019) Nota metodológica estimaciones de voto en Comunidades Autónomas y grandes ciudades Estudio nº 3245 Marzo-abril 2019. https://datos.cis.es/pdf/3245_EstimacionEAM.pdf

Alaminos, Antonio y Tezanos, José Félix (2019) Nota. Nota metodológica estimaciones de voto y escaños. Estudio nº 3242 Macrobarómetro de marzo. Preelectoral elecciones generales 2019. Modelo longitudinal CIS V108. https://www.cis.es/documents/d/cis/IM3242pdf

Alaminos-Fernández, Antonio F° (2023) Introducción a la teoría de conjuntos difusos y sus aplicaciones en investigación social e IA. Obets Ciencia Abierta. Alicante: Limencop. ISBN 978-84-09-49456-9. http://hdl.handle.net/10045/132732

Kahn, H., & Wiener, A. J. (1967). The Year 2000: A Framework for Speculation on the Next Thirty-Three Years. Nueva York: Macmillan.

Schwartz, P. (1996). The Art of the Long View: Paths to Strategic Insight for Yourself and Your Company. Nueva York: Doubleday.

Wack, P. (1985). Scenarios: Uncharted Waters Ahead. Harvard Business Review, 63(5), 73-89.