Análisis de escenarios del barómetro de mayo de 2025 (ECIS3510)

Documentación técnica de la estimación electoral

Cómo citar este documento: Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2025). *Informe técnico de la estimación del Estudio 3510. Barómetro de mayo 2025*. Documentación técnica de la estimación electoral. Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid.

Índice

1) Modelo Analítico	2
2) Análisis distribucional y de asociación	8
3) Análisis de estructuras de inercia temporal y patrones de incertidumbre	54
5) Referencias	146

1 Modelo analítico

Cierto es que el Centro de Investigaciones Sociológicas nunca ha fallado en una predicción electoral; tan cierto, como lo es que el Centro de Investigaciones Sociológicas nunca ha acertado en una predicción electoral. Ambas afirmaciones son ciertas dado que el Centro de Investigaciones Sociológicas nunca hace predicciones electorales. Este informe técnico es un resumen de los análisis efectuados para la estimación del apoyo electoral que reciben los partidos políticos, coyunturalmente, en el momento de efectuarse la medición. Una estimación electoral publicada periódicamente por el Centro de Investigaciones Sociológicas en sus barómetros mensuales.

Desde 2019 todas las estimaciones son el resultado de aplicar un único modelo teórico de referencia (Modelo Bifactorial Inercia-Incertidumbre), un único método de especificación (metodología de escenarios) así como de un único sistema de operativización basado en estructuras motivacionales de los electores. En ese sentido, sus resultados son desde 2019 completamente comparables a lo largo del tiempo. Los análisis que aquí se presentan están diseñados para la detección, medición y sistematización del apoyo electoral, ya sea explícito o potencial, que reciben los partidos políticos en función de diferentes configuraciones de escenarios. Con dicha finalidad, se efectúa un estudio diagnóstico exhaustivo de las estructuras y patrones presentes en la encuesta de opinión pública.

No es un análisis exploratorio; por el contrario, se encuentra en todo momento monitorizado teóricamente, de tal modo que todos los resultados observables son interpretables en el marco analítico que establece el Modelo Bifactorial Inercia Incertidumbre. La acumulación en el tiempo de sucesivos diagnósticos ha permitido refinar los modelos estadísticos empleados, los algoritmos aplicados, así como las operaciones analíticas realizadas. En ese sentido, se presentan aquí aquellas más sustantivas para conocer y comprender el grado de equilibrio (interdependencia de las estimaciones) y estabilidad (consistencia) de los apoyos electorales que reciben los partidos en el momento de la recolección de datos. Este informe se estructura en varias partes. Una primera parte introductoria a la lógica del modelo y sus objetivos metodológicos.

El modelo bifactorial es una caja de herramientas analíticas, con aplicaciones particulares a la medición e incluso a la prospectiva. En el caso del Centro de Investigaciones Sociológicas solamente se publican las mediciones de coyuntura y no las especulaciones sobre posibles escenarios prospectivos. Tras una breve presentación teórica del modelo y algunas claves de interpretación se presenta el análisis empírico con varias secciones. Finalmente se incluyen un listado de referencias referidas al planteamiento epistemológico, teórico y metodológico del modelo. Existen en la actualidad suficientes publicaciones sobre su aplicación para que se encuentre exhaustivamente documentado (ver listado de referencias).

1.1 Modelo Bifactorial Inercia Incertidumbre

El Modelo Bifactorial Inercia-Incertidumbre fue propuesto en el año 2019 por los profesores Antonio Alaminos (Universidad de Alicante) y José Félix Tezanos (UNED), siendo en el momento de publicarse este informe el utilizado por el Centro de Investigaciones Sociológicas para realizar las mediciones del apoyo electoral que reciben los partidos políticos. El Modelo Bifactorial Inercia-Incertidumbre es un modelo de medición que constituye una propuesta teórica y metodológica importante en varios sentidos.

En primer lugar, pone de relieve y destaca la existencia de "borrosidad" en las decisiones de las personas. Una incertidumbre real que no puede ser obviada por la exigencia de respuestas únicas e imaginariamente definitivas sobre el estado de la opinión pública. El establecimiento de dicha premisa, el posible estado indeterminado del fenómeno objeto de medición, da forma al enfoque analítico aplicado desde el modelo. El modelo integra y sistematiza los efectos de dicha incertidumbre sobre la medición. Aproximar la realidad social como un objeto de estudio que no es rígido ni definitivo exige que parte de los instrumentos que se aplican para conocerla no puedan serlo.

Por ello, en la medida que se incorpora la incertidumbre y la inercia al proceso de medición, el modelo adquiere la aplicabilidad de una "caja de herramientas" analíticas, algo que se ejemplifica en este informe técnico. El enfoque empírico aplicado se basa en la metodología de escenarios, si bien orientados a la exploración del presente y no a la indagación sobre estados futuros. En el caso del Centro de Investigaciones Sociológicas, la medición del apoyo electoral que recibe un partido es una labor que va más allá de estimar un porcentaje o su intervalo de confianza. Implica una exploración y diagnóstico de los escenarios potenciales, considerando los más probables (voto directo) y evaluando los más improbables (voto alternativo).

El Modelo Bifactorial Inercia-Incertidumbre aplica el método de escenarios como herramienta de análisis y diagnóstico multifuncional. En ese sentido, una de sus aplicaciones en tanto que instrumento de medición es la estimación electoral, si bien este no se encuentra limitado a dicha finalidad. Su finalidad es esencialmente de diagnóstico, midiendo las tensiones internas existentes en términos de decisión electoral por parte de los ciudadanos. Destaca por ello por su capacidad para monitorizar de forma empírica las dinámicas internas de los electorados tal y como se expresan a través de los escenarios. El Modelo Bifactorial considera que el estado de un fenómeno social en el momento de la medición es el resultado de una combinación entre la inercia del pasado y la novedad que aporte el presente o la expectativa de las personas sobre su comportamiento en el futuro.

El Modelo Bifactorial considera que dentro de un campo de posibilidad definido por los votos directos y los alternativos configurado por diferentes escenarios existe un subconjunto de probabilidad. Aquello que es más o menos probable dadas las condiciones de posibilidad existentes. No es una predicción sobre el futuro. Es una medición de los estados de opinión en el presente. Por ejemplo, en una predicción electoral se presupone la existencia en el futuro de una diana. Una "diana" que, en un

formato de predicción paramétrica, plantea que el futuro ya está aquí. En ese sentido, el objetivo de una predicción es aproximarse al centro paramétrico de una diana que, insistimos, ya estaba preconfigurada en el pasado en el que habitaban quienes produjeron la predicción.

El Modelo Bifactorial Inercia-Incertidumbre enfoca la cuestión desde otra perspectiva. La diana futura no existe. Solo existe el presente, sus inercias y sus incertidumbres reales. El desafío que enfrenta el Modelo Bifactorial es diferente al de una predicción dado que su finalidad es estimar la "diana" que se preconfigura en el presente. En otras palabras, identificar dónde se ubican las probabilidades de cada partido y qué forma tiene su "diana". Una "diana" a la que apuntarían las predicciones que se efectúan en el presente. No se trata de una "diana" preexistente en un futuro determinista. Es una "diana" que debe ser configurada y en sí misma estimada sobre un espacio de posibilidades. La aplicación al presente del método de escenarios parte de la premisa de que el presente no está completamente definido o decidido. Con mayor razón cuando se trata de medir en el presente la probabilidad de un comportamiento futuro. Preguntar a una persona qué haría en una circunstancia hipotética, unas elecciones, solamente puede recibir respuesta hipotéticas y abiertas al cambio.

Una apertura al cambio que puede ser de mayor o menor magnitud, afectar a unos partidos más que a otros, pero siempre existente. Así, la decisión sobre votar o qué votar alcanza un grado de certeza diferente según los electorados. Pero es una indecisión que es real y define el presente. En ese sentido, una medición del estado actual de los electorados mediante escenarios participa de todos los elementos que caracterizan al estudio de un fenómeno futuro.

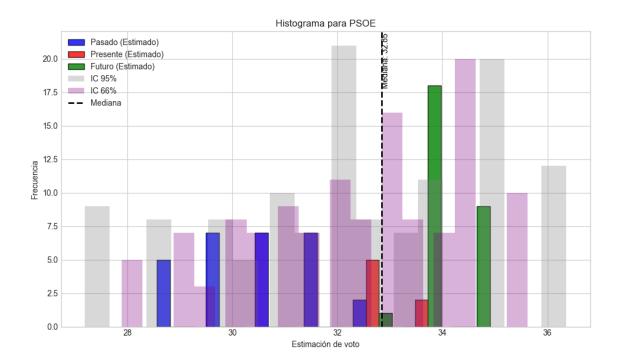
La metodología de escenarios define un enfoque sistematizado utilizado para explorar y desarrollar múltiples opciones posibles en un contexto de incertidumbre. Herman Kahn y Anthony Wiener (1967) definieron los escenarios como "hipotéticas secuencias de eventos construidas con el propósito de focalizar la atención en causalidades y decisiones", poniendo el énfasis en la secuencia de eventos y su impacto potencial. En otra definición, Pierre Wack (1985), considera el método de escenarios como "la forma de pensar en realidades múltiples", subrayando la necesidad de reconocer y adaptarse a diversas pero posibles futuras realidades. Precisamente Wack enfatizó la utilidad de los escenarios para desafiar el pensamiento lineal y promover una planificación más flexible y adaptable. En su aplicación mediante el Modelo Bifactorial, la propuesta es considerar el presente como algo abierto y no cerrado en una única medición denotativa.

Por ello, la metodología de escenarios aplicada a la medición implica una reconceptualización en función del objeto. Reconoce que el presente no es un punto fijo, sino un espectro de posibilidades múltiples y divergentes; se asume que el presente es inherentemente incierto y que cualquier intento de medirlo precisa considerar múltiples variantes de actuación y de su interacción. Unos escenarios que involucran a diversos tipos de electores según su contribución a la incertidumbre global: es el caso de electores militantes, simpatizantes, afines o que realmente dudan entre diferentes partidos políticos (voto alternativo). Los escenarios son construidos a través de un proceso que generalmente incluye la identificación de factores clave, tendencias, y fuerzas impulsoras; el Modelo Bifactorial utiliza como base de para la identificación de los factores clave el Modelo Pentafactorial de motivación electoral

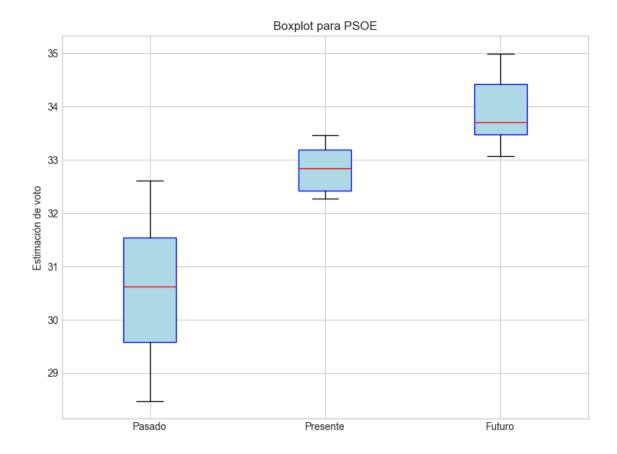
propuesto por los profesores Alaminos y Alaminos Fernández (2012), integrando estos elementos en realidades coherentes; tras la especificación de escenarios se evalúan sus impactos potenciales. La especificación se encuentra abierta a la incorporación de nuevos factores, en la medida que tanto el tipo de elección como las variables disponibles condicionan la configuración de referencia. Finalmente, la implementación y optimización de los algoritmos en Python ha sido efectuada por Alaminos-Fernández. En este análisis se emplean siete escenarios de incertidumbre y tres estructuras de inercia (pasado, presente y expectativas actuales sobre el futuro). Los escenarios que operativizan los patrones de incertidumbre del presente análisis pivotan sobre los siguientes factores que los identifican. Escenario 1: escenario base; escenario 2: afinidad ideológica; escenario 3: imagen de partido; escenario 4: efecto de liderazgo (presidente preferido); escenario 5: afinidad ideológica en configuración de alta movilización; escenario 6: imagen de partido en configuración de alta movilización y finalmente escenario 7: efecto de liderazgo en configuración de alta movilización. Para una información más detallada y exhaustiva se presentan al final del documento una relación de referencias teóricas y aplicadas.

1.2 Orientaciones básicas de análisis

En un primer apartado se muestran las distribuciones de las mediciones estimadas para cada partido en el conjunto de los escenarios; esto permite evaluar a) la concentración o dispersión de las estimaciones, así como b) la presencia de multimodalidad o c) discontinuidades que indican la existencia de funciones latentes discontinuas que se expresan dando lugar a estimaciones fragmentadas. Indirectamente es una medición de la mayor o menor fragilidad de los apoyos electorales. Por ejemplo, un partido cuya estimación sea unimodal y concentrada evidencia una escasa dependencia de los movimientos que experimenten el resto de los partidos. Expresado, en otros términos, en sus crecimientos o fracasos dependen en ese momento en concreto de sus propios pasos. Por el contrario, cuanto más dispersas o multimodales sean sus distribuciones mayor dependencia presentan respecto a las movilizaciones de los electorados de otros partidos. En este apartado se incluye la asociación observada entre las estimaciones de los partidos de ámbito nacional. No es pertinente comparar los estimados nacionales de partidos nacionales con los estimados de partidos autonómicos, debido a la falacia ecológica, las interdependencias no se mostrarían distorsionadas. Unas asociaciones que expresan tanto la relación interna entre los escenarios como evidencia la estructura latente que configura la existencia de dos bloques ideológicos.


En un segundo apartado se evalúan en detalle de forma segmentada la secuencia de escenarios, descomponiendo los elementos de inercia y los patrones de incertidumbre. Se analizan las interacciones existentes entre las inercias y los patrones de incertidumbre, estableciendo si son aditivas o multiplicativas. En el caso de ser multiplicativas se evalúa si son de variabilidad creciente o decreciente en función de la inercia pasado-presente-futuro.

La variabilidad decreciente se interpreta como una mayor concentración y grado de decisión de los apoyos electorales en el presente y las expectativas. La variabilidad creciente significa que se incrementa la fragilidad y volatilidad de sus apoyos considerando la disposición a la movilización electoral. La varianza de las estimaciones se descompone en los componentes de inercia e incertidumbre. En definitiva, se estima en qué grado influyen la inercia (ocultación de voto o efecto de posición en el cuestionario) y los patrones de incertidumbre a la estimación final. La estructura de inercia muestra el efecto de la ocultación de voto, generalmente en los partidos de derecha o ultraderecha.

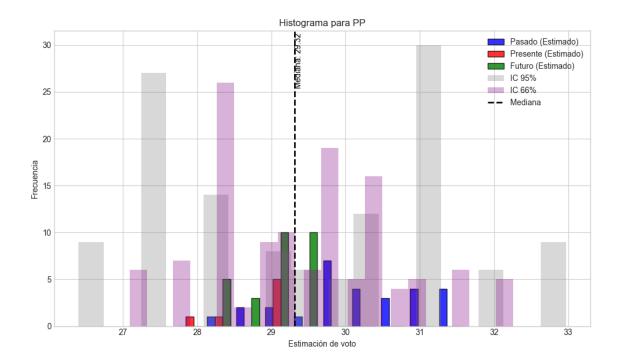

Los patrones de incertidumbre se evalúan por los "dientes de sierra", su amplitud y profundidad. Por ejemplo, los patrones de incertidumbre de un partido que presenta un voto estable y decidido tenderán a la horizontalidad, sin grandes zigzagueos. Por el contrario, un partido cuyo electorado se encuentre en estado de incertidumbre mostrara grandes "dientes de sierra". En la práctica, en la primera parte se evalúa la consistencia interna del conjunto de estimaciones (homogénea, no homogénea) y en la segunda parte la fuente de la variabilidad (inercia o incertidumbre). En ese sentido, un interés especial presenta los patrones medios de incertidumbre según escenarios. Este análisis se concentra en la mayor o menor dependencia de cada partido a las diferentes condiciones que configuran los escenarios. Un

interés especial procede del análisis del error, dado que su posible no aleatoriedad muestra la interdependencia entre la inercia y los patrones de incertidumbre.

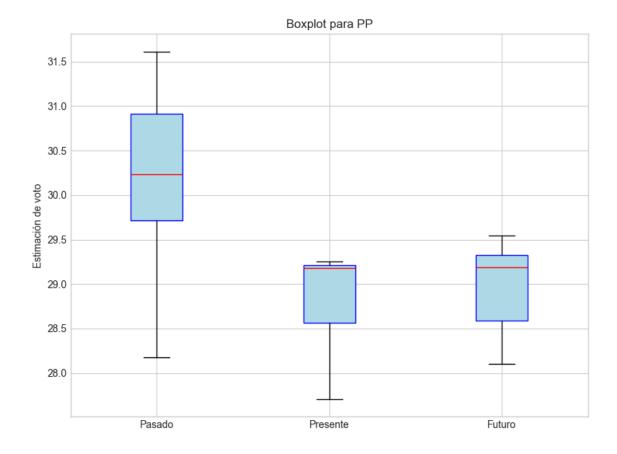
2 Análisis distribucional y correlacional de los escenarios

Histograma con Intervalos de Confianza para PSOE

Boxplot para PSOE


Resultados para PSOE

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	30.5626	30.6273	32.2947	32.8468
Presente	32.8291	32.8468		
Futuro	33.8931	33.7033		

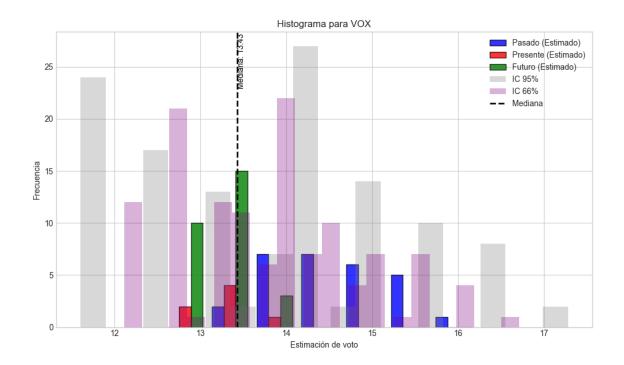

Interpretación de la dispersión: La dispersión es baja, los valores están muy concentrados en torno a la media. El rango intercuartílico es amplio, sugiriendo la presencia de valores atípicos o una distribución asimétrica.

Estadísticas Descriptivas para PSOE

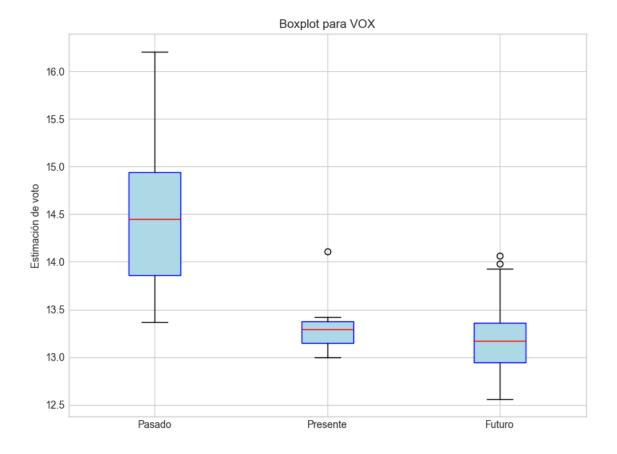
Indicador	Valor
Varianza	3.3395
Desviación estándar	1.8274
Coeficiente de Variación (CV)	0.0566
Asimetría (Skewness)	-0.5156
Curtosis	-0.8943
Rango Intercuartílico (IQR)	2.8759
Desviación absoluta de la mediana (MAD)	1.1901

Histograma con Intervalos de Confianza para PP

Boxplot para PP


Resultados para PP

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	30.1808	30.2342	29.5092	29.3177
Presente	28.8139	29.1818		
Futuro	29.0115	29.1850		

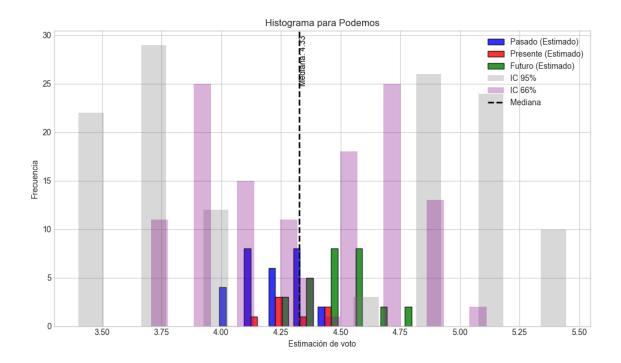

Interpretación de la dispersión: La dispersión es baja, los valores están muy concentrados en torno a la media. Los valores se encuentran en un rango intercuartílico controlado.

Estadísticas Descriptivas para PP

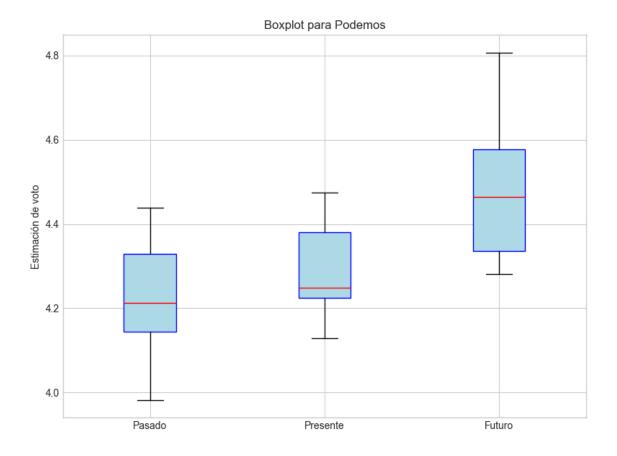
Indicador	Valor
Varianza	0.8501
Desviación estándar	0.9220
Coeficiente de Variación (CV)	0.0312
Asimetría (Skewness)	0.5693
Curtosis	-0.1502
Rango Intercuartílico (IQR)	0.8456
Desviación absoluta de la mediana (MAD)	0.4774

Histograma con Intervalos de Confianza para VOX

Boxplot para VOX


Resultados para VOX

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	14.4918	14.4515	13.7847	13.4263
Presente	13.3518	13.2953		
Futuro	13.1859	13.1692		

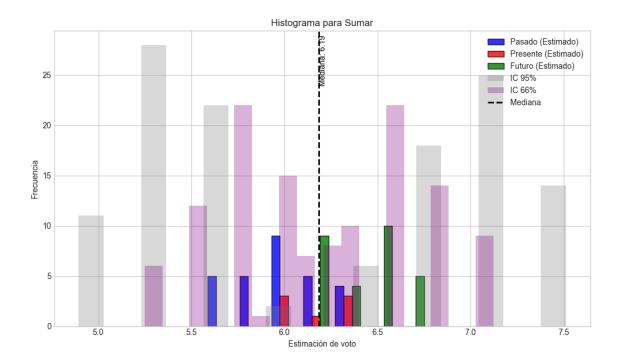

Interpretación de la dispersión: La dispersión es baja, los valores están muy concentrados en torno a la media. El rango intercuartílico es amplio, sugiriendo la presencia de valores atípicos o una distribución asimétrica.

Estadísticas Descriptivas para VOX

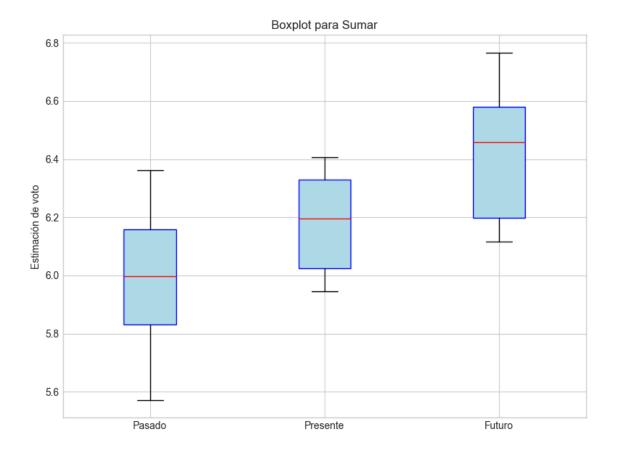
The state of the s	
Indicador	Valor
Varianza	0.7022
Desviación estándar	0.8380
Coeficiente de Variación (CV)	0.0608
Asimetría (Skewness)	0.8105
Curtosis	-0.1450
Rango Intercuartílico (IQR)	1.1373
Desviación absoluta de la mediana (MAD)	0.4766

Histograma con Intervalos de Confianza para Podemos

Boxplot para Podemos


Resultados para Podemos

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	4.2226	4.2130	4.3432	4.3266
Presente	4.2946	4.2484		
Futuro	4.4758	4.4635		

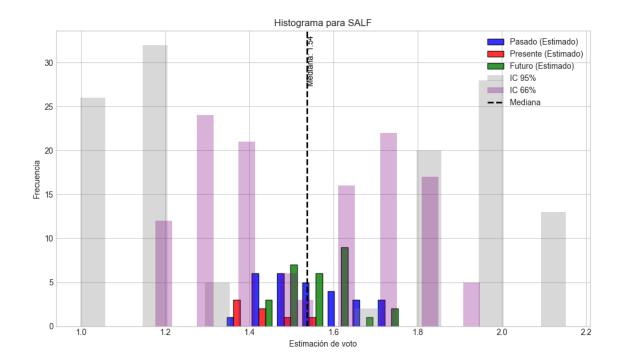

Interpretación de la dispersión: La dispersión es baja, los valores están muy concentrados en torno a la media. Los valores se encuentran en un rango intercuartílico controlado.

Estadísticas Descriptivas para Podemos

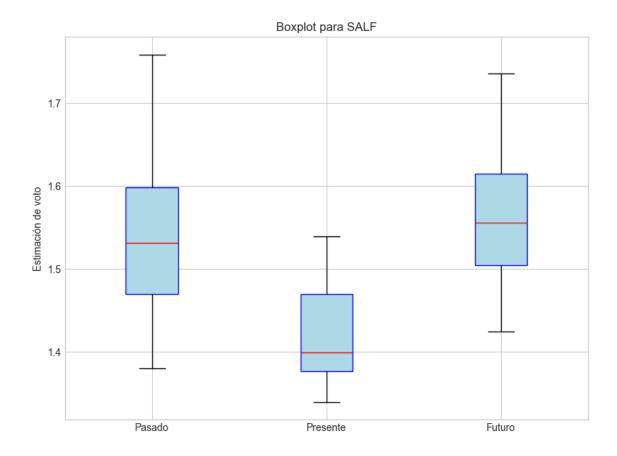
Indicador	Valor
Varianza	0.0316
Desviación estándar	0.1777
Coeficiente de Variación (CV)	0.0409
Asimetría (Skewness)	0.2583
Curtosis	-0.3812
Rango Intercuartílico (IQR)	0.2332
Desviación absoluta de la mediana (MAD)	0.1225

Histograma con Intervalos de Confianza para Sumar

Boxplot para Sumar


Resultados para Sumar

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	5.9877	5.9966	6.1992	6.1859
Presente	6.1792	6.1966		
Futuro	6.4157	6.4586		

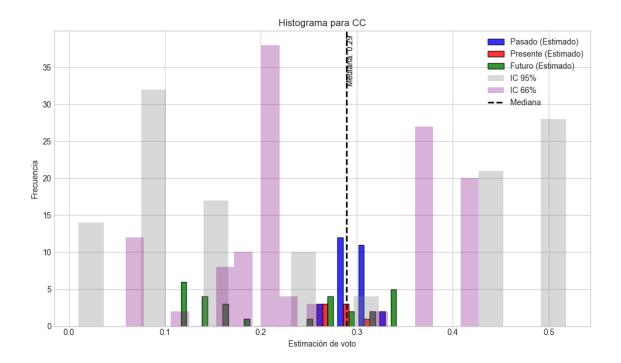

Interpretación de la dispersión: La dispersión es baja, los valores están muy concentrados en torno a la media. Los valores se encuentran en un rango intercuartílico controlado.

Estadísticas Descriptivas para Sumar

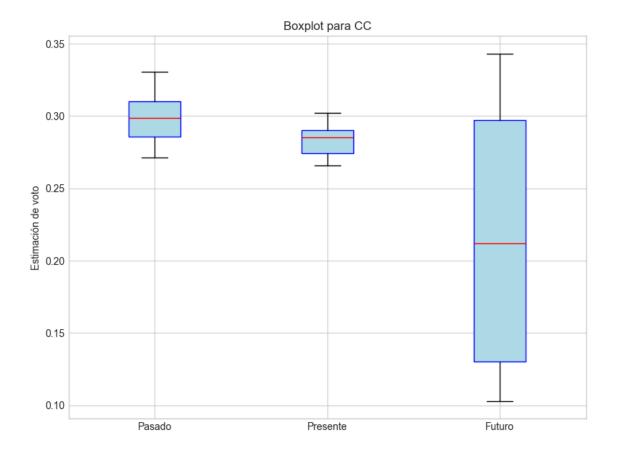
Indicador	Valor
Varianza	0.0824
Desviación estándar	0.2871
Coeficiente de Variación (CV)	0.0463
Asimetría (Skewness)	-0.1058
Curtosis	-0.6764
Rango Intercuartílico (IQR)	0.4143
Desviación absoluta de la mediana (MAD)	0.2126

Histograma con Intervalos de Confianza para SALF

Boxplot para SALF


Resultados para SALF

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	1.5408	1.5317	1.5364	1.5364
Presente	1.4247	1.3999		
Futuro	1.5599	1.5560		

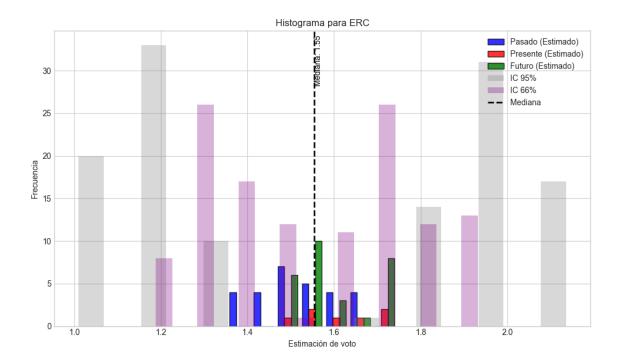

Interpretación de la dispersión: La dispersión es baja, los valores están muy concentrados en torno a la media. El rango intercuartílico es amplio, sugiriendo la presencia de valores atípicos o una distribución asimétrica.

Estadísticas Descriptivas para SALF

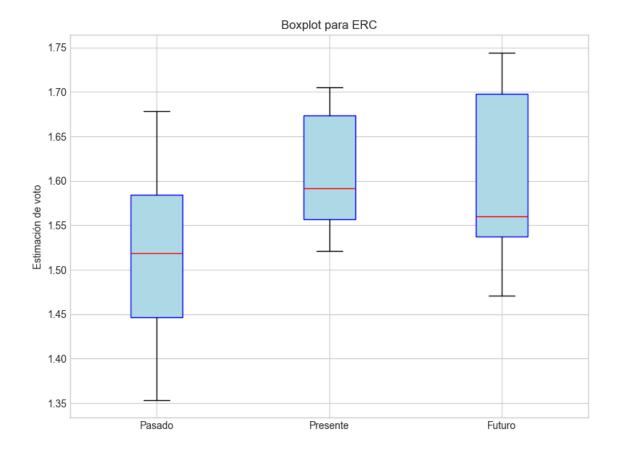
Indicador	Valor
Varianza	0.0093
Desviación estándar	0.0964
Coeficiente de Variación (CV)	0.0627
Asimetría (Skewness)	0.2161
Curtosis	-0.4546
Rango Intercuartílico (IQR)	0.1318
Desviación absoluta de la mediana (MAD)	0.0635

Histograma con Intervalos de Confianza para CC

Boxplot para CC


Resultados para CC

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	0.2984	0.2987	0.2597	0.2895
Presente	0.2832	0.2852		
Futuro	0.2152	0.2122		

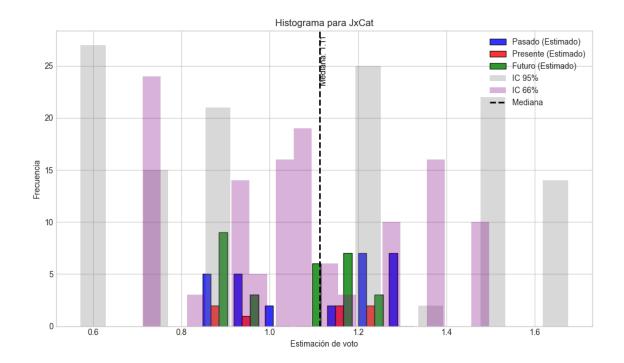

Interpretación de la dispersión: La dispersión es moderada. El rango intercuartílico es amplio, sugiriendo la presencia de valores atípicos o una distribución asimétrica.

Estadísticas Descriptivas para CC

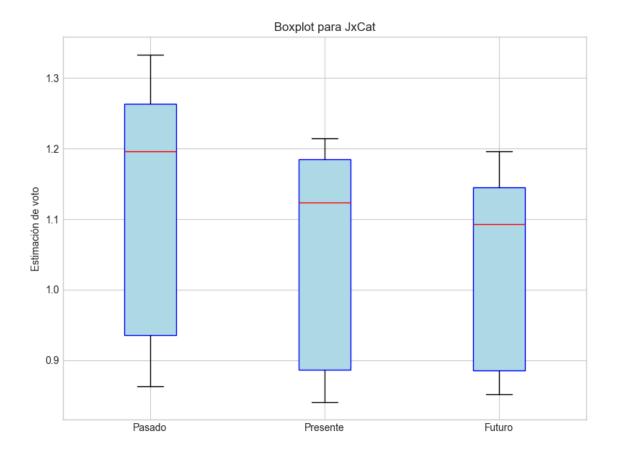
Indicador	Valor
Varianza	0.0052
Desviación estándar	0.0723
Coeficiente de Variación (CV)	0.2783
Asimetría (Skewness)	-1.1928
Curtosis	-0.1188
Rango Intercuartílico (IQR)	0.0441
Desviación absoluta de la mediana (MAD)	0.0181

Histograma con Intervalos de Confianza para ERC

Boxplot para ERC


Resultados para ERC

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	1.5163	1.5187	1.5611	1.5536
Presente	1.6113	1.5918		
Futuro	1.5934	1.5601		

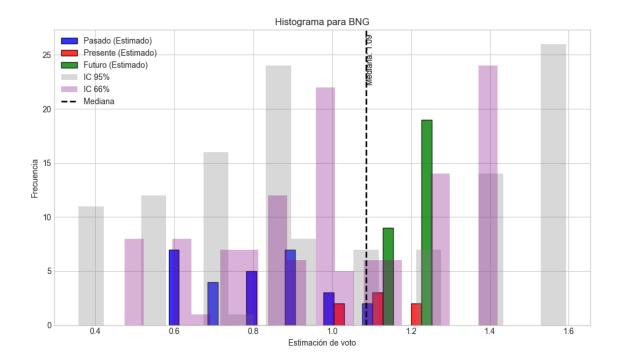

Interpretación de la dispersión: La dispersión es baja, los valores están muy concentrados en torno a la media. El rango intercuartílico es amplio, sugiriendo la presencia de valores atípicos o una distribución asimétrica.

Estadísticas Descriptivas para ERC

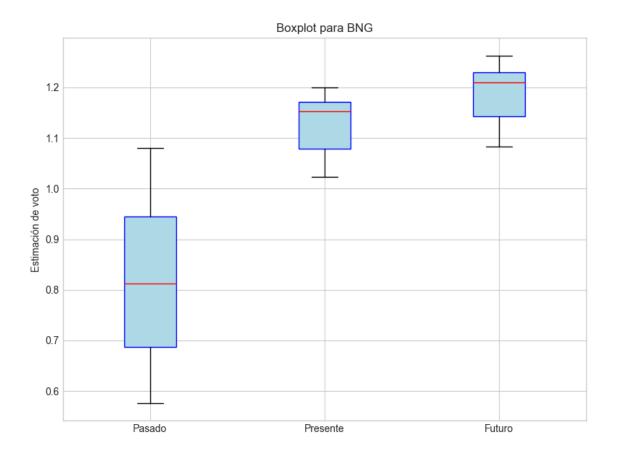
Indicador	Valor
Varianza	0.0093
Desviación estándar	0.0964
Coeficiente de Variación (CV)	0.0618
Asimetría (Skewness)	0.1011
Curtosis	-0.6477
Rango Intercuartílico (IQR)	0.1395
Desviación absoluta de la mediana (MAD)	0.0695

Histograma con Intervalos de Confianza para JxCat

Boxplot para JxCat


Resultados para JxCat

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	1.1145	1.1960	1.0711	1.1134
Presente	1.0457	1.1231		
Futuro	1.0339	1.0934		

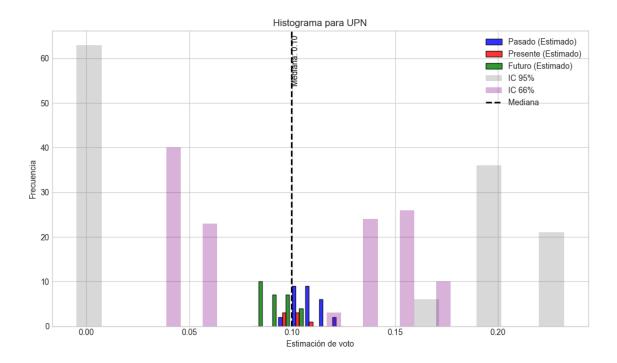

Interpretación de la dispersión: La dispersión es moderada. Los valores se encuentran en un rango intercuartílico controlado.

Estadísticas Descriptivas para JxCat

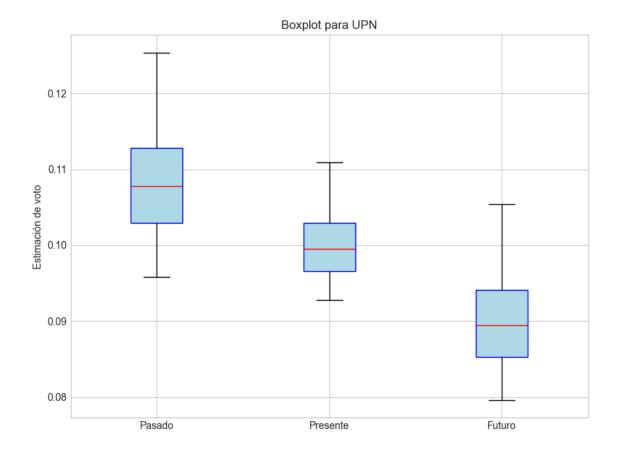
Indicador	Valor
Varianza	0.0247
Desviación estándar	0.1572
Coeficiente de Variación (CV)	0.1467
Asimetría (Skewness)	-0.0395
Curtosis	-1.5002
Rango Intercuartílico (IQR)	0.2883
Desviación absoluta de la mediana (MAD)	0.1524

Histograma con Intervalos de Confianza para BNG

Boxplot para BNG


Resultados para BNG

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	0.8251	0.8126	1.0200	1.0858
Presente	1.1245	1.1523		
Futuro	1.1889	1.2093		

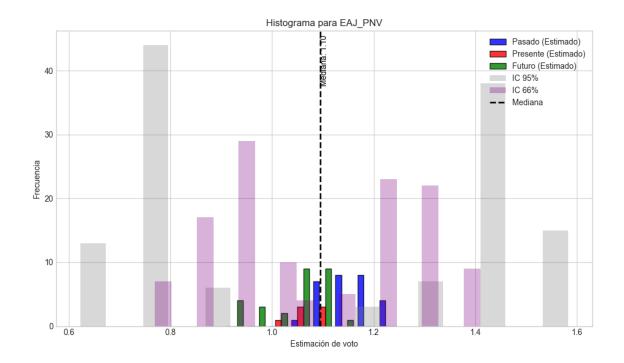

Interpretación de la dispersión: La dispersión es moderada. El rango intercuartílico es amplio, sugiriendo la presencia de valores atípicos o una distribución asimétrica.

Estadísticas Descriptivas para BNG

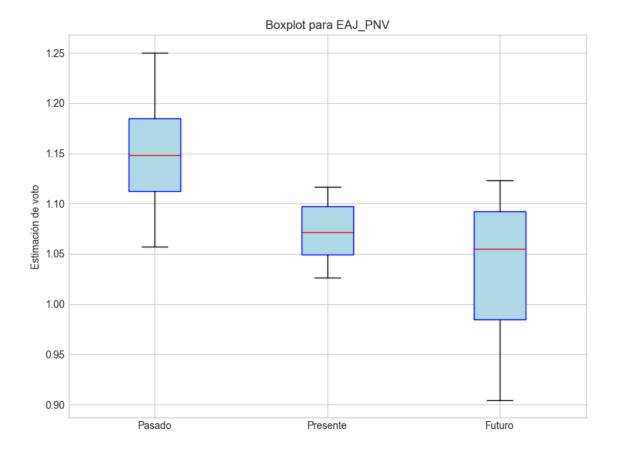
Indicador	Valor
Varianza	0.0438
Desviación estándar	0.2093
Coeficiente de Variación (CV)	0.2052
Asimetría (Skewness)	-0.6924
Curtosis	-0.8206
Rango Intercuartílico (IQR)	0.3299
Desviación absoluta de la mediana (MAD)	0.1386

Histograma con Intervalos de Confianza para UPN

Boxplot para UPN


Resultados para UPN

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	0.1083	0.1078	0.0993	0.0996
Presente	0.1003	0.0995		
Futuro	0.0901	0.0894		

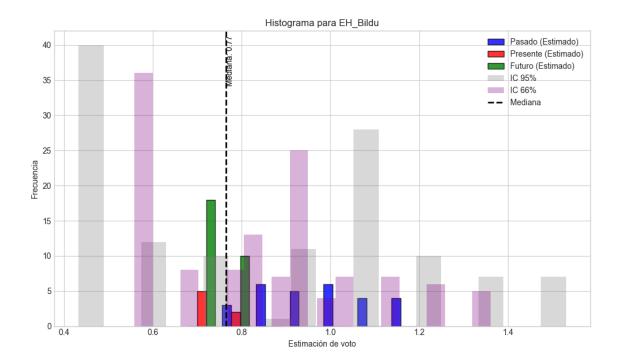

Interpretación de la dispersión: La dispersión es moderada. Los valores se encuentran en un rango intercuartílico controlado.

Estadísticas Descriptivas para UPN

Indicador	Valor
Varianza	0.0001
Desviación estándar	0.0109
Coeficiente de Variación (CV)	0.1102
Asimetría (Skewness)	0.1377
Curtosis	-0.6453
Rango Intercuartílico (IQR)	0.0157
Desviación absoluta de la mediana (MAD)	0.0081

Histograma con Intervalos de Confianza para EAJ_PNV

Boxplot para EAJ_PNV


Resultados para EAJ_PNV

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	1.1530	1.1480	1.0922	1.0955
Presente	1.0724	1.0713		
Futuro	1.0363	1.0551		

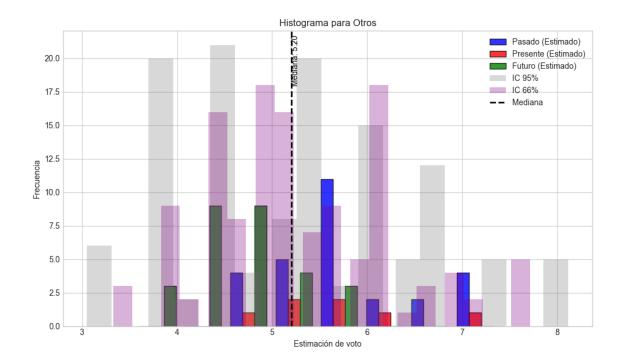
Interpretación de la dispersión: La dispersión es baja, los valores están muy concentrados en torno a la media. Los valores se encuentran en un rango intercuartílico controlado.

Estadísticas Descriptivas para EAJ_PNV

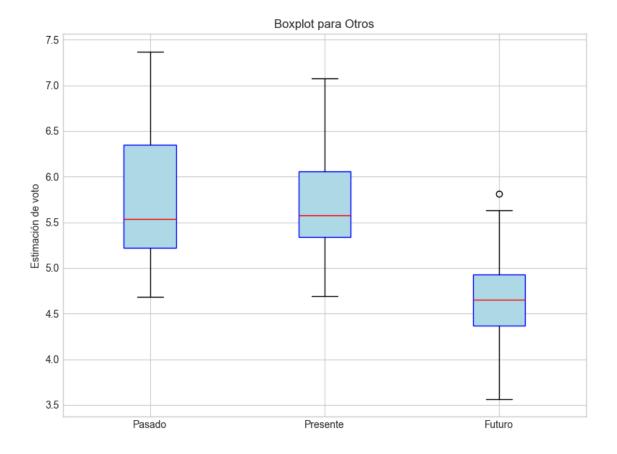
Indicador	Valor
Varianza	0.0064
Desviación estándar	0.0798
Coeficiente de Variación (CV)	0.0731
Asimetría (Skewness)	-0.4132
Curtosis	0.0329
Rango Intercuartílico (IQR)	0.0874
Desviación absoluta de la mediana (MAD)	0.0444

Histograma con Intervalos de Confianza para EH_Bildu

Boxplot para EH_Bildu


Resultados para EH_Bildu

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	0.9756	0.9695	0.8418	0.7655
Presente	0.7286	0.7319		
Futuro	0.7362	0.7392		

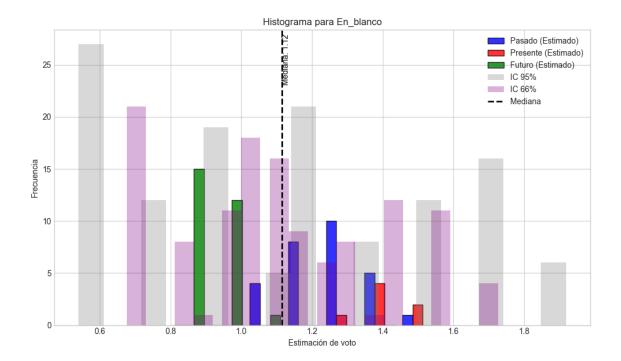

Interpretación de la dispersión: La dispersión es moderada. El rango intercuartílico es amplio, sugiriendo la presencia de valores atípicos o una distribución asimétrica.

Estadísticas Descriptivas para EH_Bildu

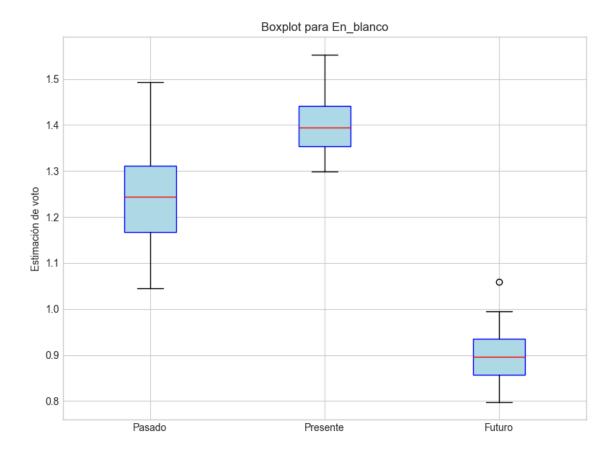
Indicador	Valor
Varianza	0.0218
Desviación estándar	0.1478
Coeficiente de Variación (CV)	0.1756
Asimetría (Skewness)	0.9595
Curtosis	-0.3833
Rango Intercuartílico (IQR)	0.1989
Desviación absoluta de la mediana (MAD)	0.0533

Histograma con Intervalos de Confianza para Otros

Boxplot para Otros


Resultados para Otros

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	5.7768	5.5382	5.2765	5.2050
Presente	5.7355	5.5756		
Futuro	4.6614	4.6504		


Interpretación de la dispersión: La dispersión es moderada. Los valores se encuentran en un rango intercuartílico controlado.

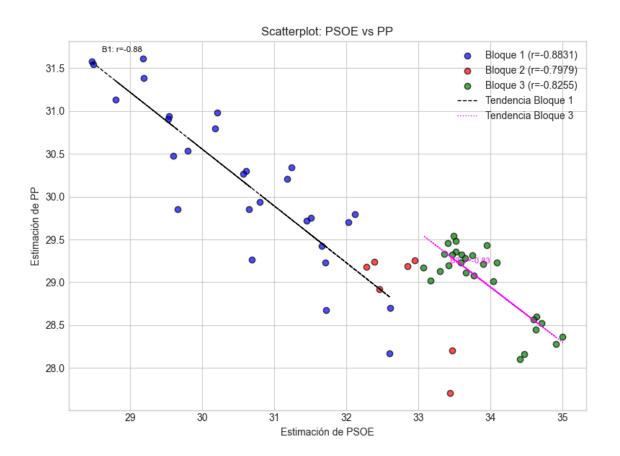
Estadísticas Descriptivas para Otros

Indicador	Valor
Varianza	0.7712
Desviación estándar	0.8782
Coeficiente de Variación (CV)	0.1664
Asimetría (Skewness)	0.5753
Curtosis	0.0330
Rango Intercuartílico (IQR)	1.0316
Desviación absoluta de la mediana (MAD)	0.5204

Histograma con Intervalos de Confianza para En_blanco

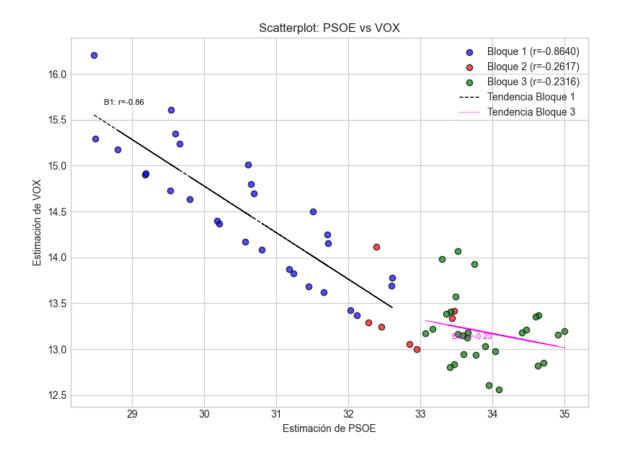
Boxplot para En_blanco

Resultados para En_blanco

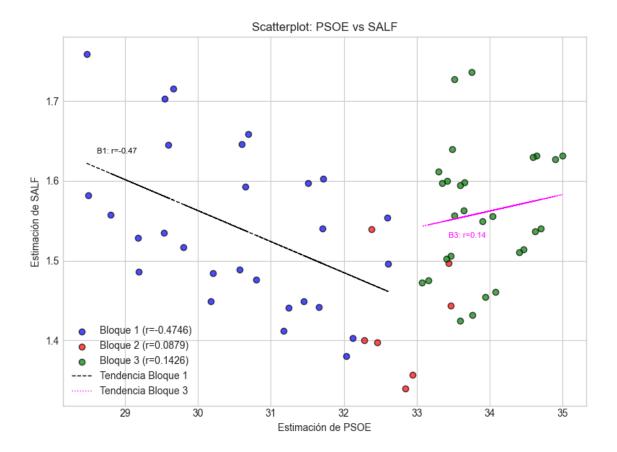

Bloque	Media	Mediana	Media Total	Mediana Total
Pasado	1.2457	1.2436	1.1110	1.1154
Presente	1.4051	1.3940		
Futuro	0.9027	0.8954		

Interpretación de la dispersión: La dispersión es moderada. Los valores se encuentran en un rango intercuartílico controlado.

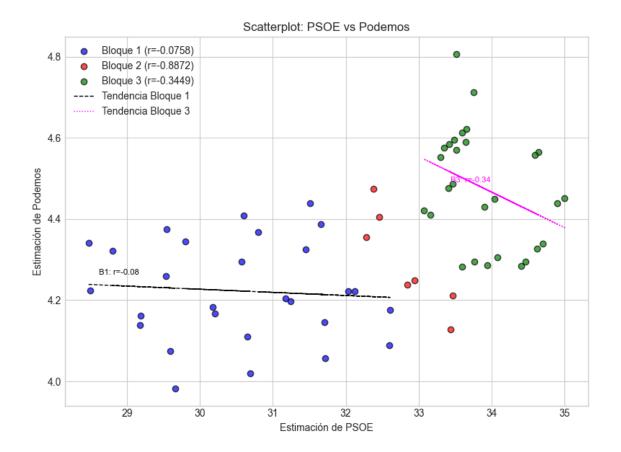
Estadísticas Descriptivas para En_blanco


Indicador	Valor
Varianza	0.0451
Desviación estándar	0.2125
Coeficiente de Variación (CV)	0.1912
Asimetría (Skewness)	0.1739
Curtosis	-1.2728
Rango Intercuartílico (IQR)	0.3825
Desviación absoluta de la mediana (MAD)	0.1934

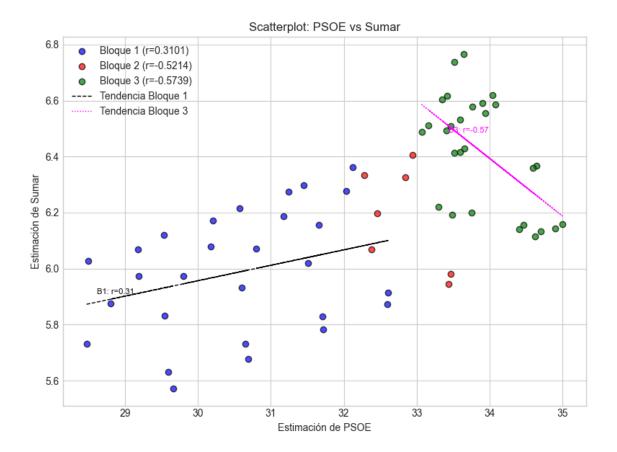
Comparación de escenarios entre partidos


Scatterplot de PSOE vs PP con coeficientes de correlación:

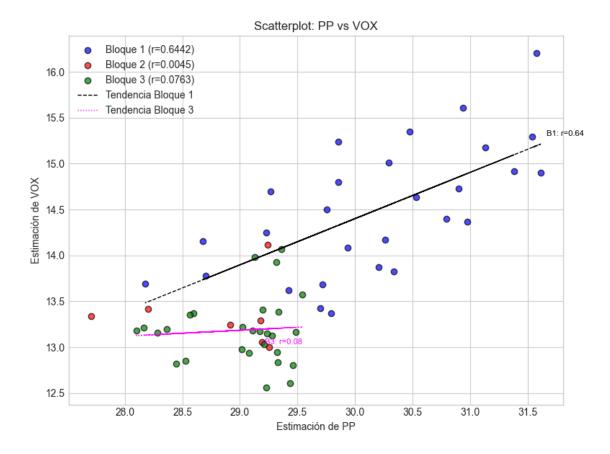
- Bloque 1: r = -0.8831 (Muy fuerte correlación con relación inversa)
- Bloque 2: r = -0.7979 (Fuerte correlación con relación inversa)
- Bloque 3: r = -0.8255 (Muy fuerte correlación con relación inversa)


Scatterplot de PSOE vs VOX con coeficientes de correlación:

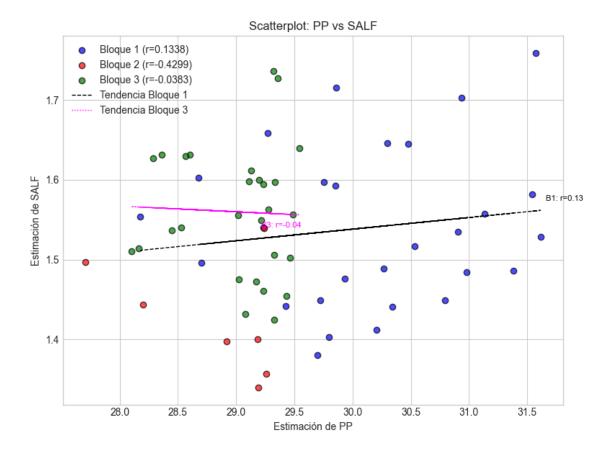
- Bloque 1: r = -0.8640 (Muy fuerte correlación con relación inversa)
- Bloque 2: r = -0.2617 (Débil correlación con relación inversa)
- Bloque 3: r = -0.2316 (Débil correlación con relación inversa)


Scatterplot de PSOE vs SALF con coeficientes de correlación:

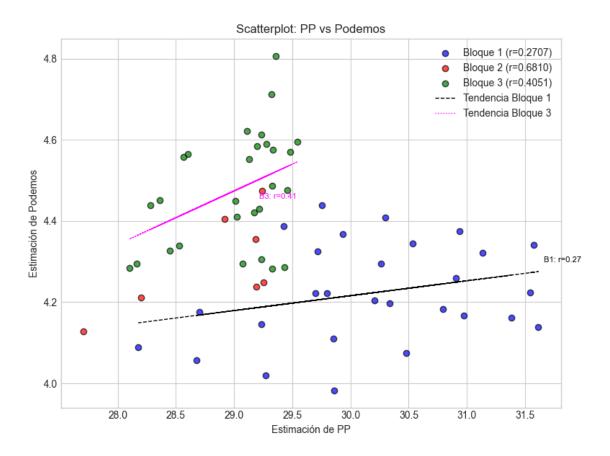
- Bloque 1: r = -0.4746 (Correlación moderada con relación inversa)
- Bloque 2: r = 0.0879 (Muy débil o nula correlación con relación directa)
- Bloque 3: r = 0.1426 (Muy débil o nula correlación con relación directa)


Scatterplot de PSOE vs Podemos con coeficientes de correlación:

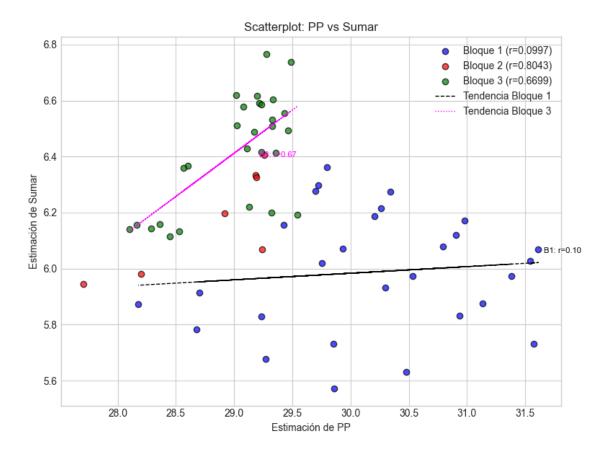
- Bloque 1: r = -0.0758 (Muy débil o nula correlación con relación inversa)
- Bloque 2: r = -0.8872 (Muy fuerte correlación con relación inversa)
- Bloque 3: r = -0.3449 (Débil correlación con relación inversa)


Scatterplot de PSOE vs Sumar con coeficientes de correlación:

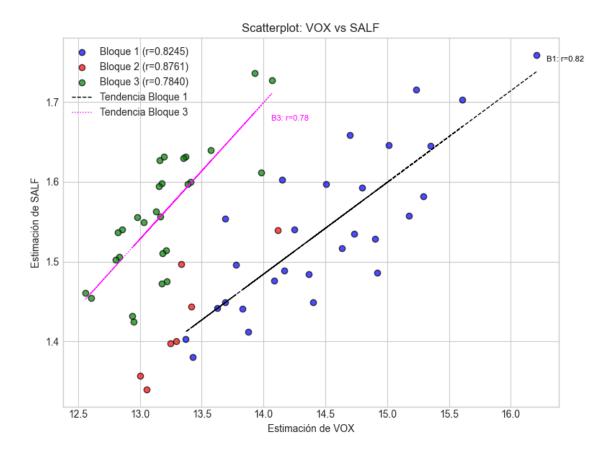
- Bloque 1: r = 0.3101 (Débil correlación con relación directa)
- Bloque 2: r = -0.5214 (Correlación moderada con relación inversa)
- Bloque 3: r = -0.5739 (Correlación moderada con relación inversa)


Scatterplot de PP vs VOX con coeficientes de correlación:

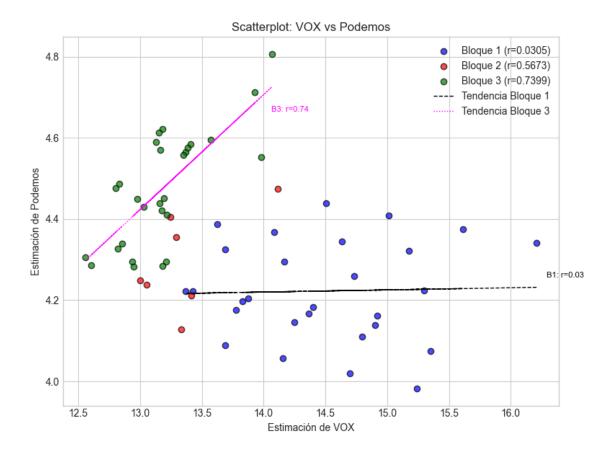
- Bloque 1: r = 0.6442 (Fuerte correlación con relación directa)
- Bloque 2: r = 0.0045 (Muy débil o nula correlación con relación directa)
- Bloque 3: r = 0.0763 (Muy débil o nula correlación con relación directa)


Scatterplot de PP vs SALF con coeficientes de correlación:

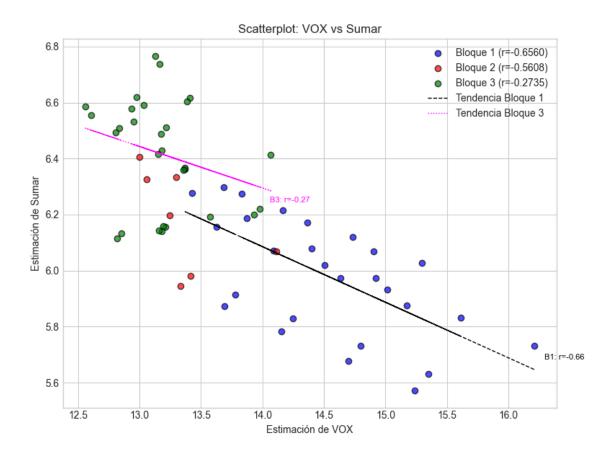
- Bloque 1: r = 0.1338 (Muy débil o nula correlación con relación directa)
- Bloque 2: r = -0.4299 (Correlación moderada con relación inversa)
- Bloque 3: r = -0.0383 (Muy débil o nula correlación con relación inversa)


Scatterplot de PP vs Podemos con coeficientes de correlación:

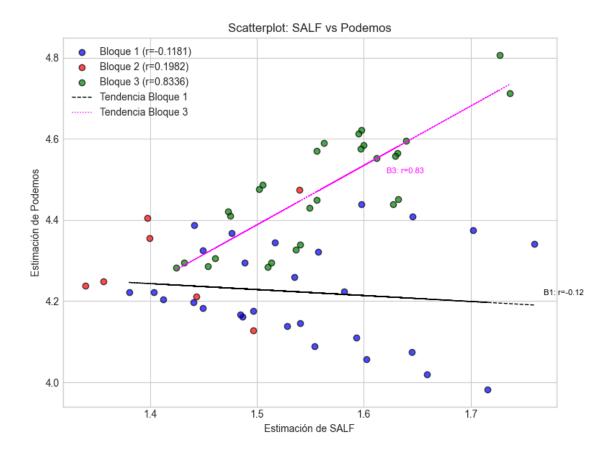
- Bloque 1: r = 0.2707 (Débil correlación con relación directa)
- Bloque 2: r = 0.6810 (Fuerte correlación con relación directa)
- Bloque 3: r = 0.4051 (Correlación moderada con relación directa)


Scatterplot de PP vs Sumar con coeficientes de correlación:

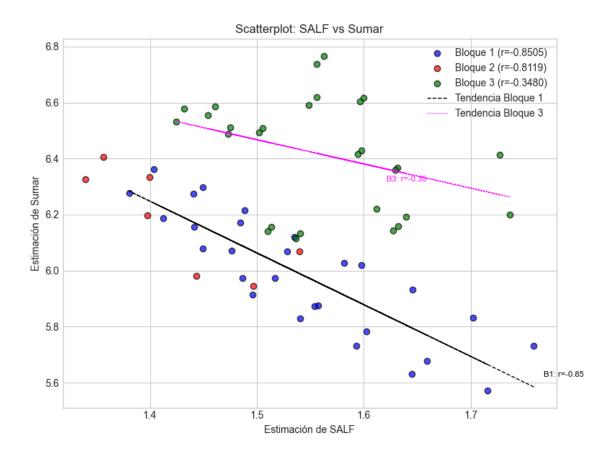
- Bloque 1: r = 0.0997 (Muy débil o nula correlación con relación directa)
- Bloque 2: r = 0.8043 (Muy fuerte correlación con relación directa)
- Bloque 3: r = 0.6699 (Fuerte correlación con relación directa)


Scatterplot de VOX vs SALF con coeficientes de correlación:

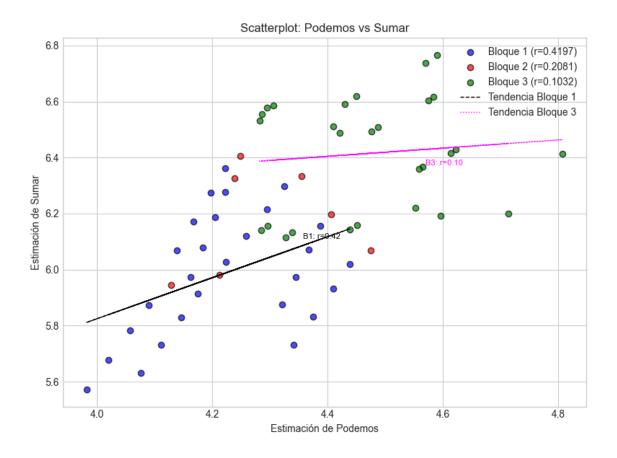
- Bloque 1: r = 0.8245 (Muy fuerte correlación con relación directa)
- Bloque 2: r = 0.8761 (Muy fuerte correlación con relación directa)
- Bloque 3: r = 0.7840 (Fuerte correlación con relación directa)


Scatterplot de VOX vs Podemos con coeficientes de correlación:

- Bloque 1: r = 0.0305 (Muy débil o nula correlación con relación directa)
- Bloque 2: r = 0.5673 (Correlación moderada con relación directa)
- Bloque 3: r = 0.7399 (Fuerte correlación con relación directa)


Scatterplot de VOX vs Sumar con coeficientes de correlación:

- Bloque 1: r = -0.6560 (Fuerte correlación con relación inversa)
- Bloque 2: r = -0.5608 (Correlación moderada con relación inversa)
- Bloque 3: r = -0.2735 (Débil correlación con relación inversa)

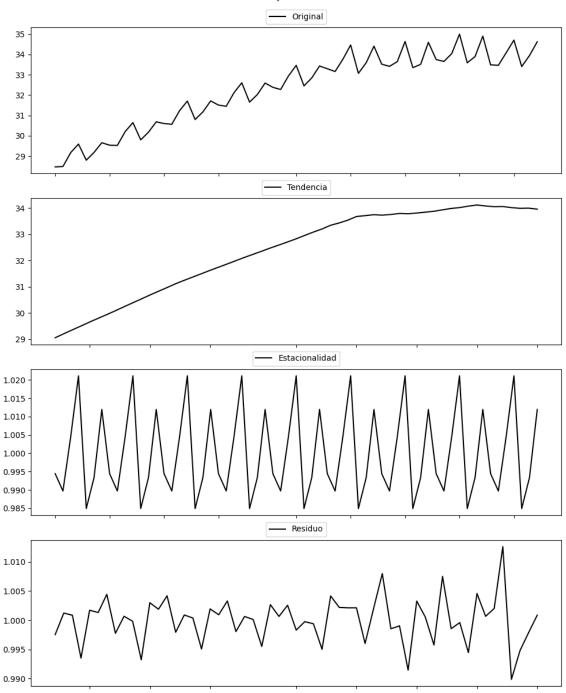

Scatterplot de SALF vs Podemos con coeficientes de correlación:

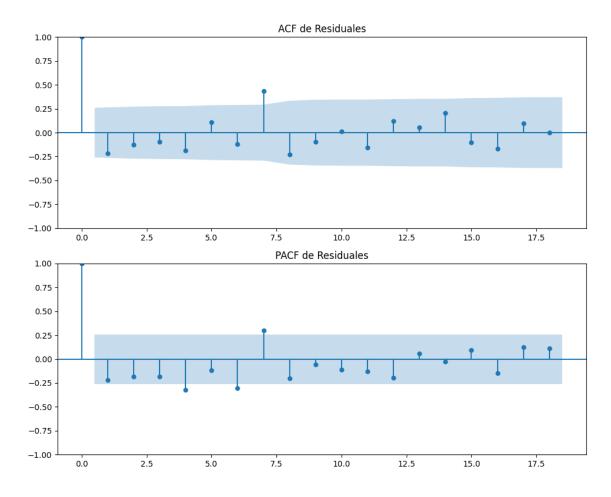
- Bloque 1: r = -0.1181 (Muy débil o nula correlación con relación inversa)
- Bloque 2: r = 0.1982 (Muy débil o nula correlación con relación directa)
- Bloque 3: r = 0.8336 (Muy fuerte correlación con relación directa)


Scatterplot de SALF vs Sumar con coeficientes de correlación:

- Bloque 1: r = -0.8505 (Muy fuerte correlación con relación inversa)
- Bloque 2: r = -0.8119 (Muy fuerte correlación con relación inversa)
- Bloque 3: r = -0.3480 (Débil correlación con relación inversa)

Scatterplot de Podemos vs Sumar con coeficientes de correlación:


- Bloque 1: r = 0.4197 (Correlación moderada con relación directa)
- Bloque 2: r = 0.2081 (Débil correlación con relación directa)
- Bloque 3: r = 0.1032 (Muy débil o nula correlación con relación directa)



Scatterplot comparativo: Bloque 1 vs Bloque 3 para todos los partidos

3. Análisis de los componentes de inercia e incertidumbre

Gráficos para PSOE

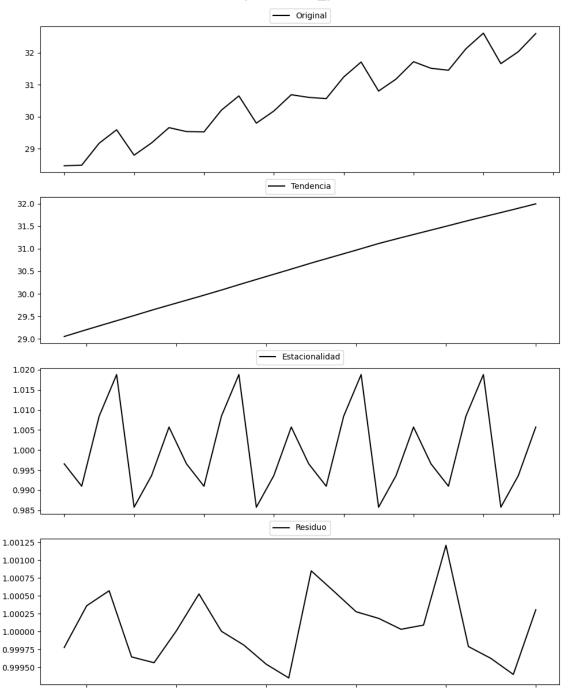
Análisis de Aleatoriedad del Error para PSOE

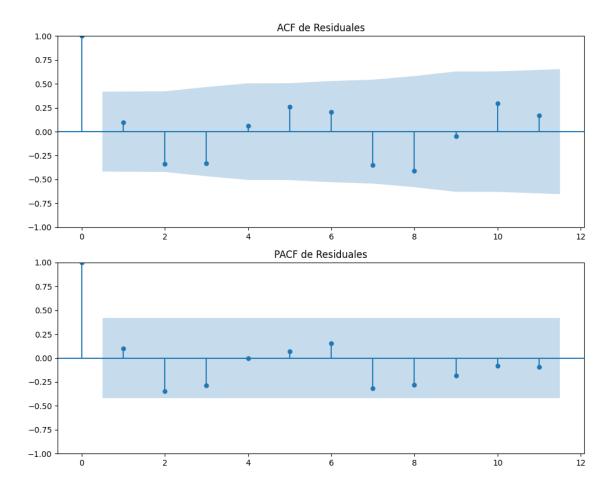
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 25.4284, p-valor: 0.0046

Prueba de Shapiro-Wilk: Estadístico=0.9675, p-valor=0.1283


Prueba de Dickey-Fuller aumentada: p-valor=0.0004


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para PSOE

Gráficos para PSOE_pasado

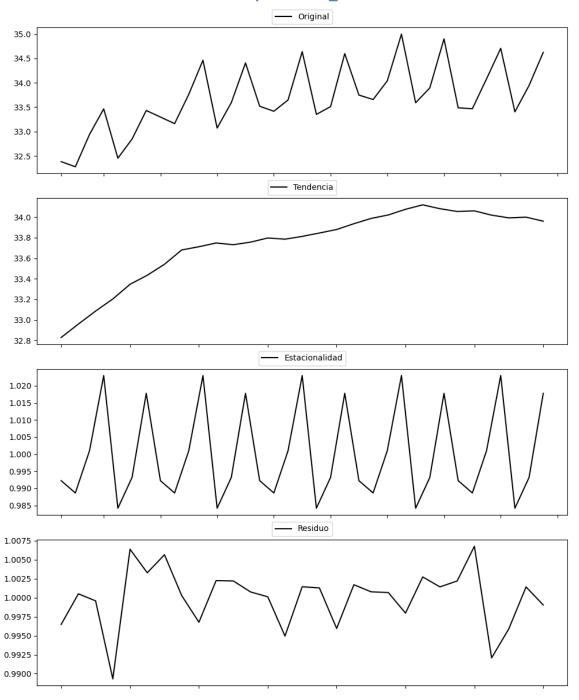
Análisis de Aleatoriedad del Error para PSOE_pasado

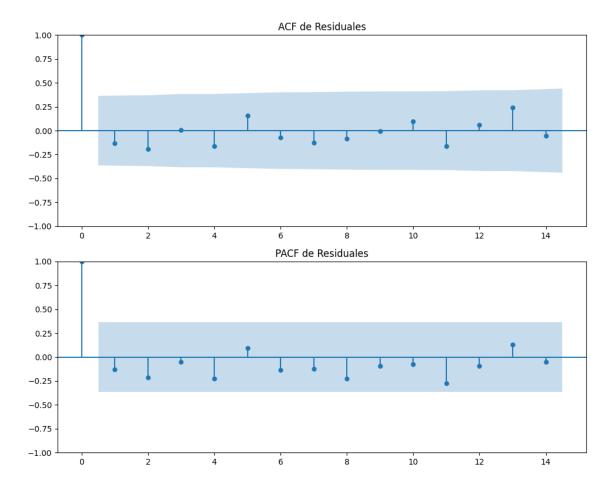
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 24.3526, p-valor: 0.0067

Prueba de Shapiro-Wilk: Estadístico=0.9652, p-valor=0.6011


Prueba de Dickey-Fuller aumentada: p-valor=0.9873


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para PSOE

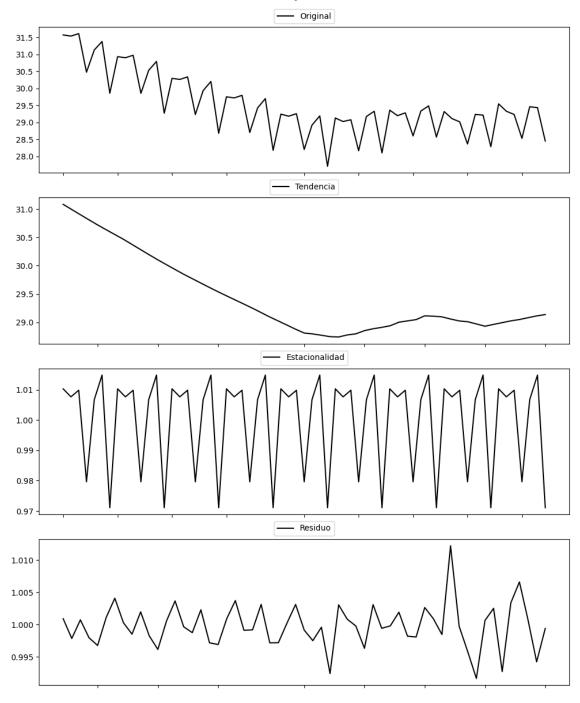
Gráficos para PSOE_futuro

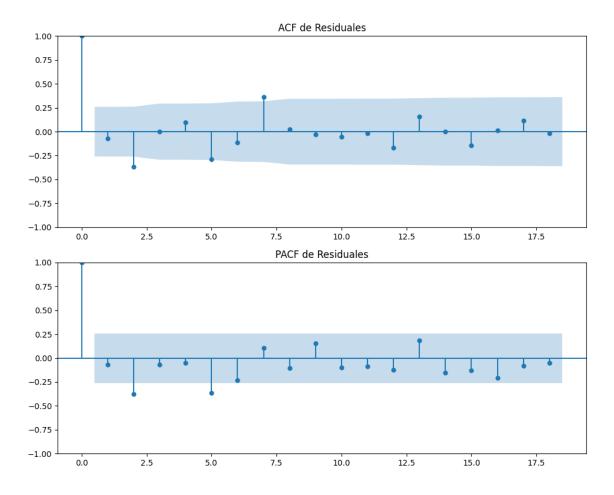
Análisis de Aleatoriedad del Error para PSOE_futuro

Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 5.3015, p-valor: 0.8701


Prueba de Shapiro-Wilk: Estadístico=0.9389, p-valor=0.0938


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para PP

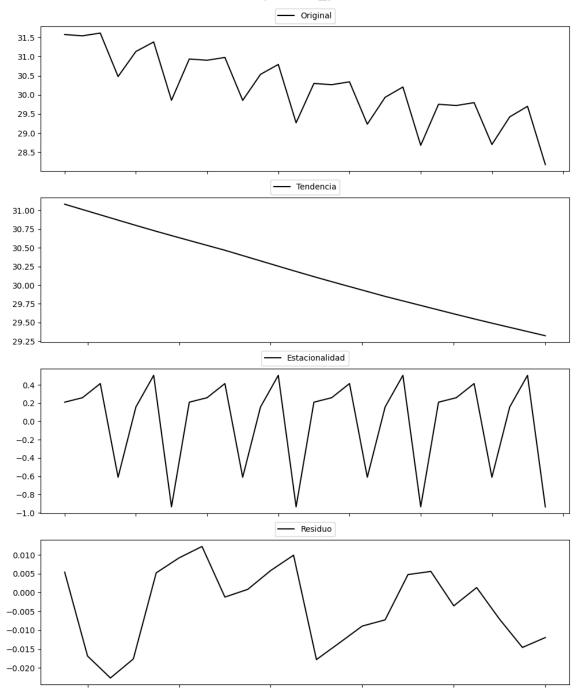
Análisis de Aleatoriedad del Error para PP

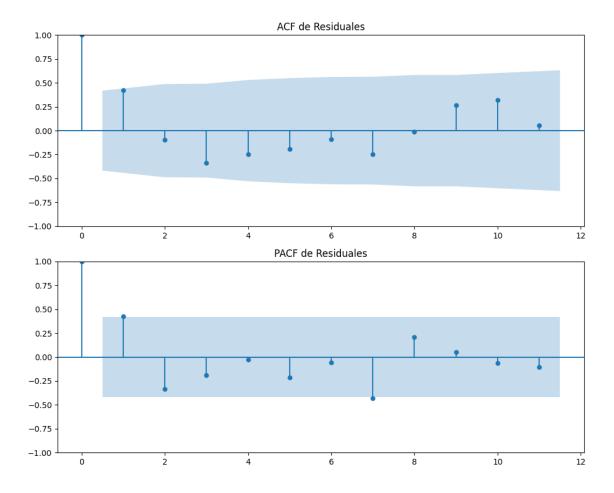
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 24.6057, p-valor: 0.0061

Prueba de Shapiro-Wilk: Estadístico=0.9547, p-valor=0.0323


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para PP

Gráficos para PP_pasado

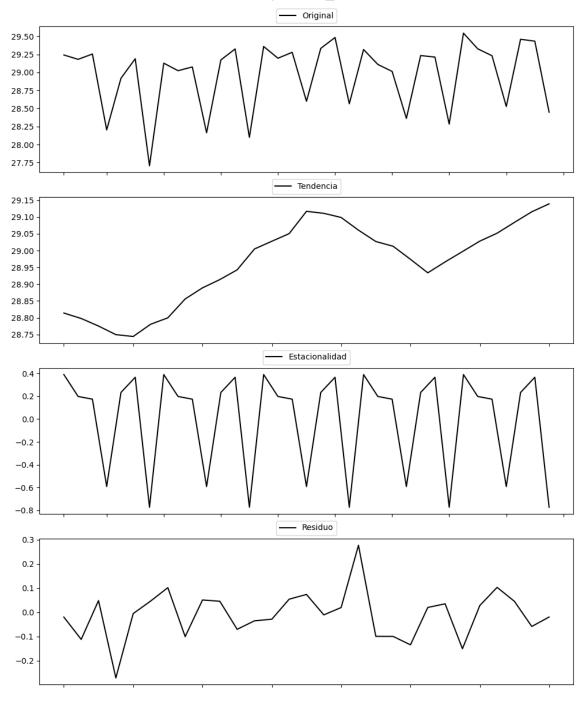
Análisis de Aleatoriedad del Error para PP_pasado

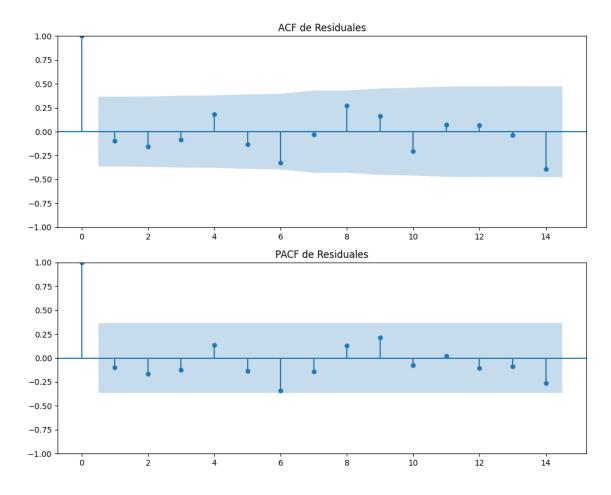
Estadística de Durbin-Watson: 0.9579

Prueba de Ljung-Box:

Estadísticos: 20.6674, p-valor: 0.0235

Prueba de Shapiro-Wilk: Estadístico=0.9401, p-valor=0.1990


Prueba de Dickey-Fuller aumentada: p-valor=0.0686


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para PP

Gráficos para PP_futuro

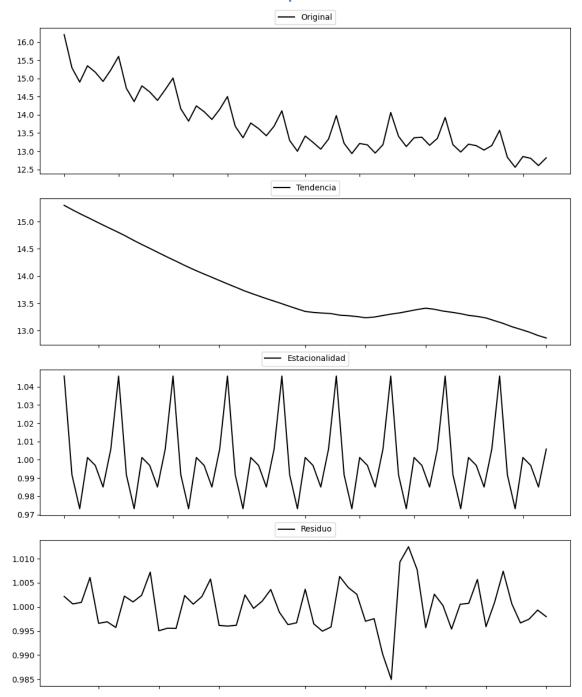
Análisis de Aleatoriedad del Error para PP_futuro

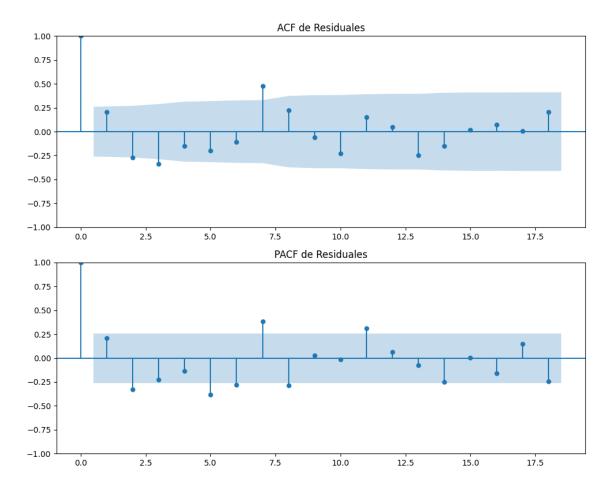
Estadística de Durbin-Watson: 2.1769

Prueba de Ljung-Box:

Estadísticos: 13.7170, p-valor: 0.1863

Prueba de Shapiro-Wilk: Estadístico=0.9502, p-valor=0.1857


Prueba de Dickey-Fuller aumentada: p-valor=0.0003


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

Gráficos para VOX

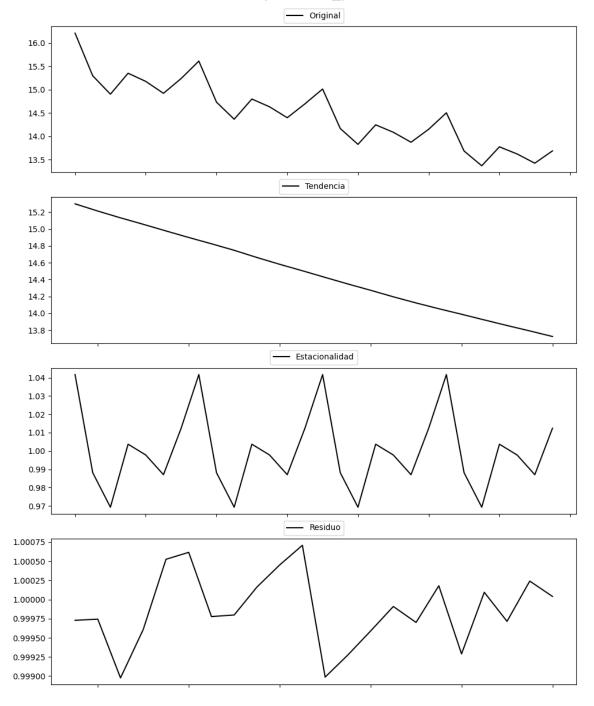
Análisis de Aleatoriedad del Error para VOX

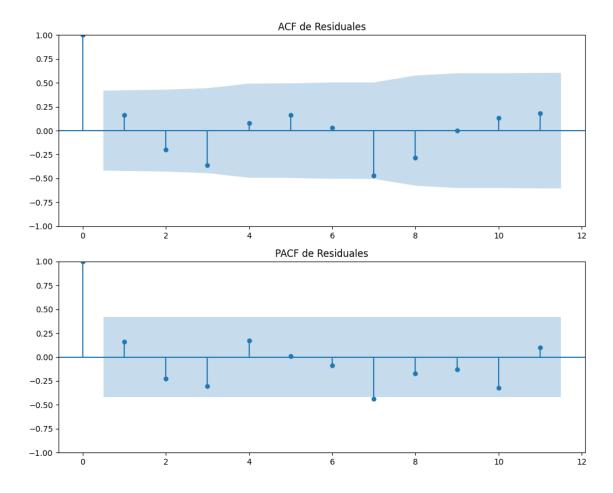
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 41.6711, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9609, p-valor=0.0627


Prueba de Dickey-Fuller aumentada: p-valor=0.5425


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para VOX

Gráficos para VOX_pasado

Análisis de Aleatoriedad del Error para VOX_pasado

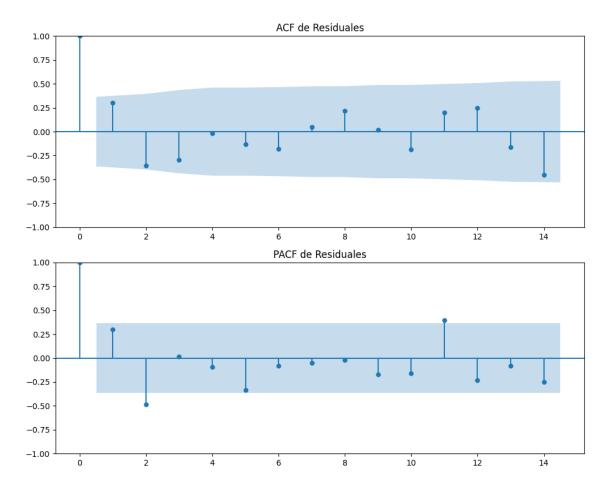
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 17.9425, p-valor: 0.0559

Prueba de Shapiro-Wilk: Estadístico=0.9676, p-valor=0.6548


Prueba de Dickey-Fuller aumentada: p-valor=0.5295


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para VOX

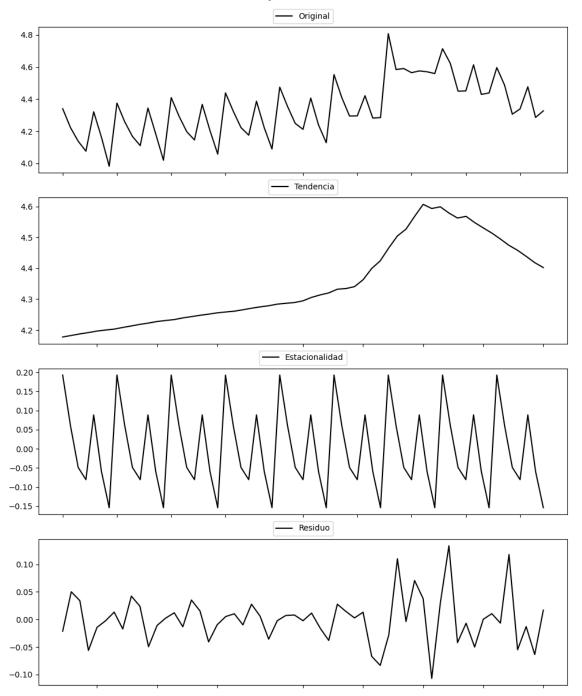
Gráficos para VOX_futuro

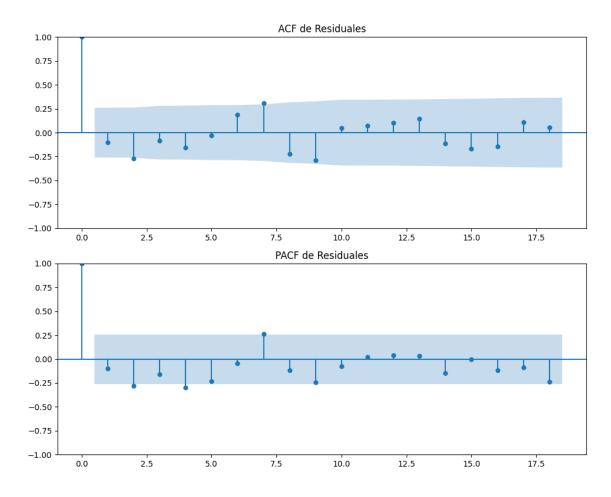
Análisis de Aleatoriedad del Error para VOX_futuro

Estadística de Durbin-Watson: 1.3508

Prueba de Ljung-Box:

Estadísticos: 15.7132, p-valor: 0.1081


Prueba de Shapiro-Wilk: Estadístico=0.9792, p-valor=0.8176


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para Podemos

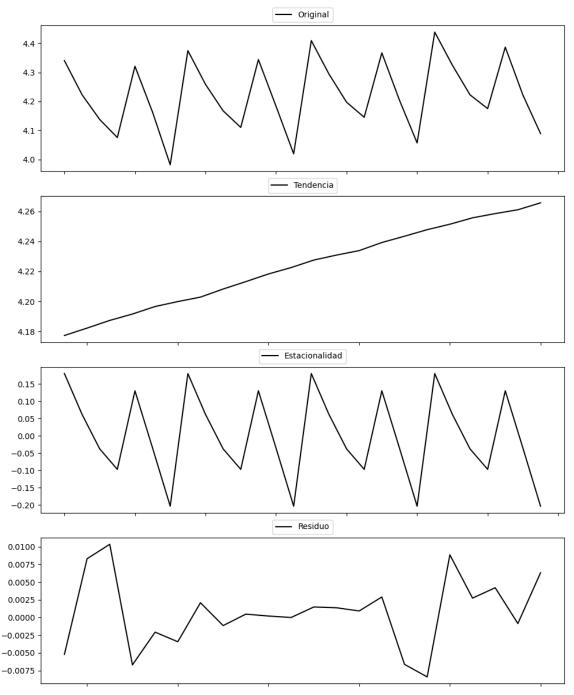
Análisis de Aleatoriedad del Error para Podemos

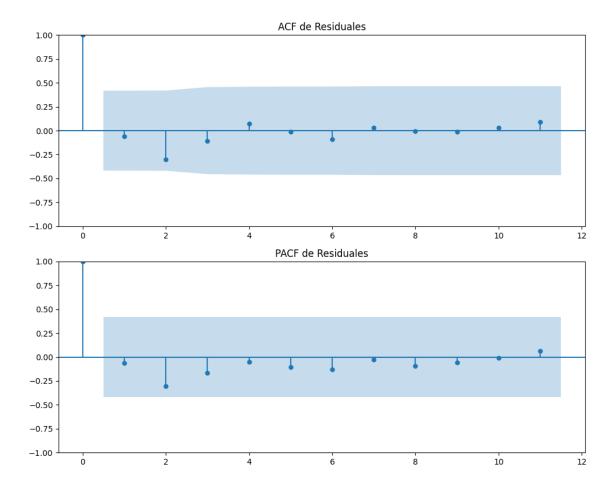
Estadística de Durbin-Watson: 2.1957

Prueba de Ljung-Box:

Estadísticos: 25.1231, p-valor: 0.0051

Prueba de Shapiro-Wilk: Estadístico=0.9452, p-valor=0.0120


Prueba de Dickey-Fuller aumentada: p-valor=0.0225


Estacionariedad: Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

Análisis de la Dinámica de Inercia Pasada para Podemos

Gráficos para Podemos_pasado

Análisis de Aleatoriedad del Error para Podemos_pasado

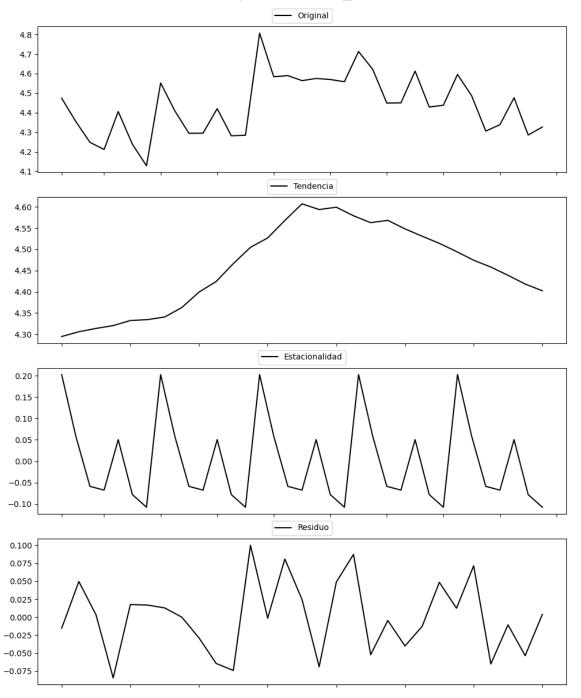
Estadística de Durbin-Watson: 1.9531

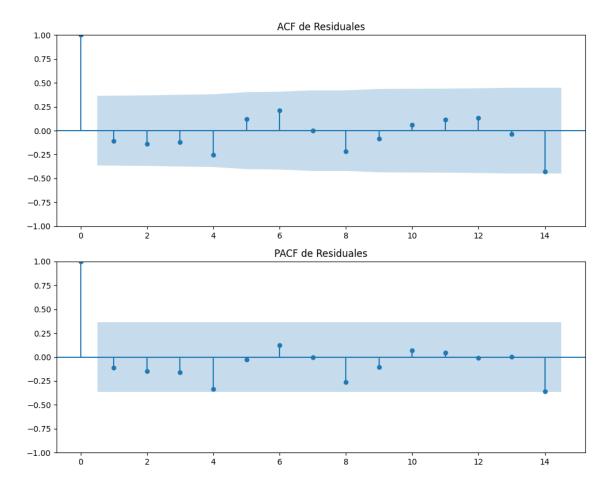
Prueba de Ljung-Box:

Estadísticos: 3.2805, p-valor: 0.9740

Prueba de Shapiro-Wilk: Estadístico=0.9721, p-valor=0.7593

Prueba de Dickey-Fuller aumentada: p-valor=0.0001


Estacionariedad: Estacionario


No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

Análisis de la Dinámica de Inercia Presente_Futuro para Podemos

Gráficos para Podemos_futuro

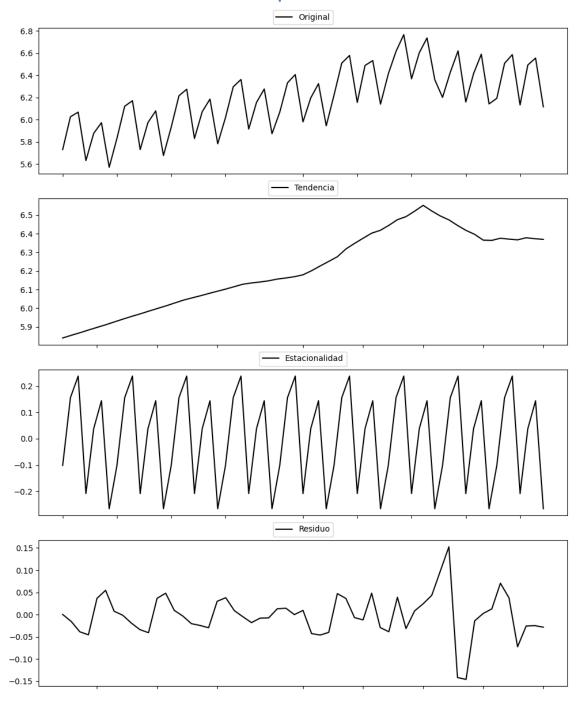
Análisis de Aleatoriedad del Error para Podemos_futuro

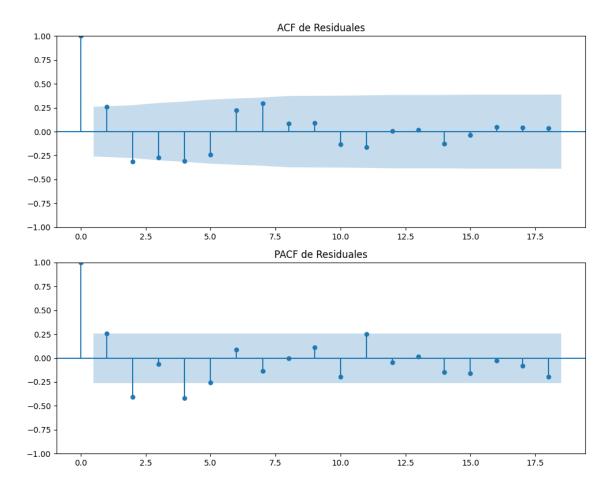
Estadística de Durbin-Watson: 2.2186

Prueba de Ljung-Box:

Estadísticos: 8.6525, p-valor: 0.5654

Prueba de Shapiro-Wilk: Estadístico=0.9654, p-valor=0.4427


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

Gráficos para Sumar

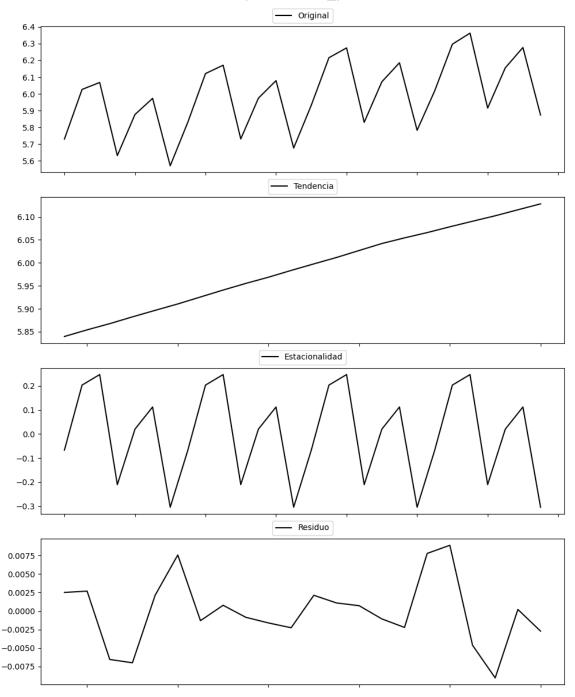
Análisis de Aleatoriedad del Error para Sumar

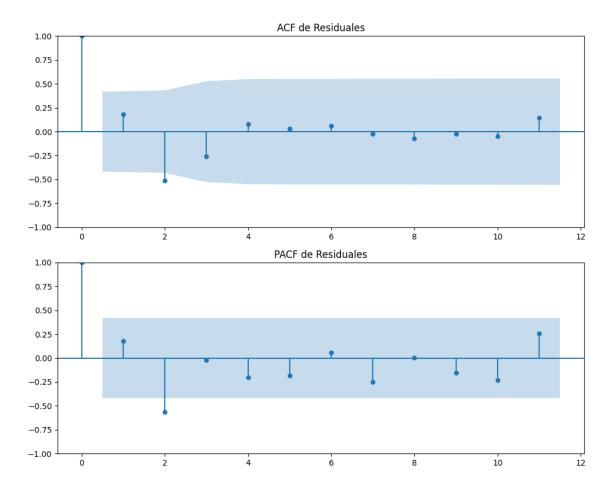
Estadística de Durbin-Watson: 1.4791

Prueba de Ljung-Box:

Estadísticos: 36.1441, p-valor: 0.0001

Prueba de Shapiro-Wilk: Estadístico=0.9340, p-valor=0.0039


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

Análisis de la Dinámica de Inercia Pasada para Sumar

Gráficos para Sumar_pasado

Análisis de Aleatoriedad del Error para Sumar_pasado

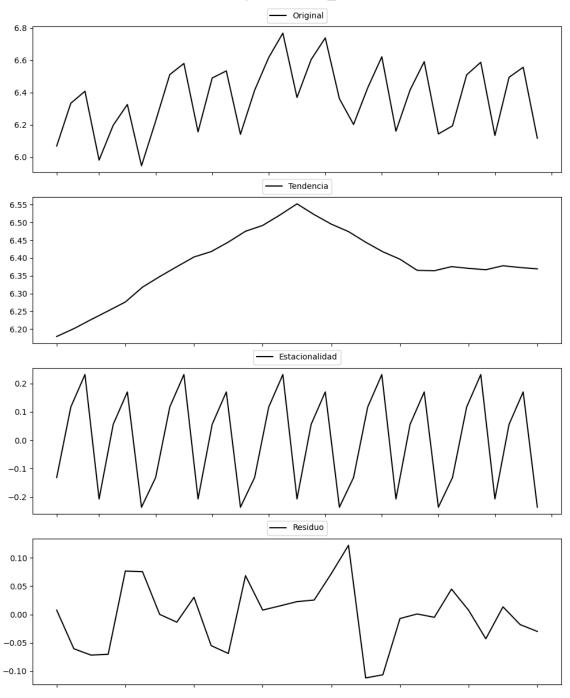
Estadística de Durbin-Watson: 1.6073

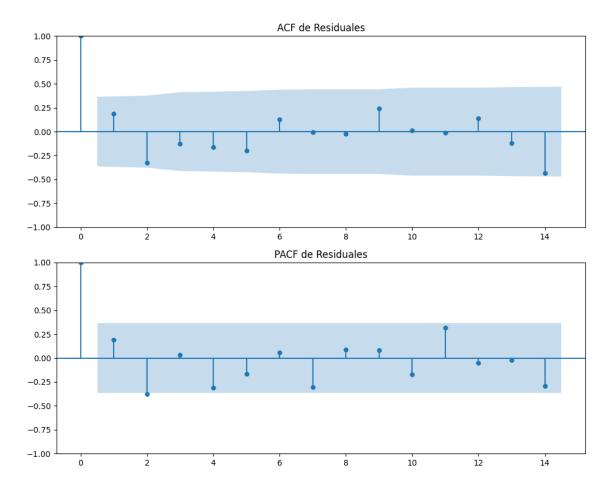
Prueba de Ljung-Box:

Estadísticos: 10.3378, p-valor: 0.4114

Prueba de Shapiro-Wilk: Estadístico=0.9629, p-valor=0.5500

Prueba de Dickey-Fuller aumentada: p-valor=0.2915


Estacionariedad: No Estacionario


No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

Análisis de la Dinámica de Inercia Presente_Futuro para Sumar

Gráficos para Sumar_futuro

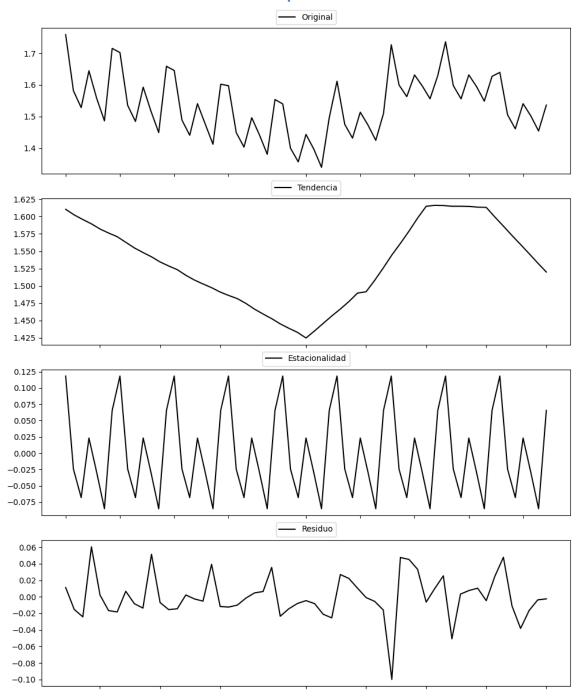
Análisis de Aleatoriedad del Error para Sumar_futuro

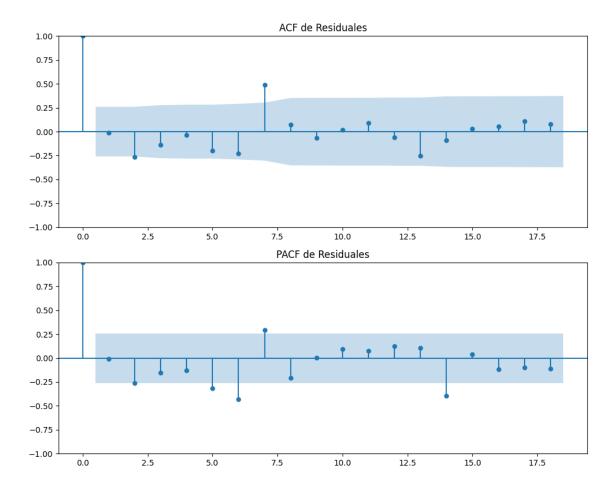
Estadística de Durbin-Watson: 1.6099

Prueba de Ljung-Box:

Estadísticos: 10.9346, p-valor: 0.3626

Prueba de Shapiro-Wilk: Estadístico=0.9783, p-valor=0.7943


Prueba de Dickey-Fuller aumentada: p-valor=0.0001


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

Gráficos para SALF

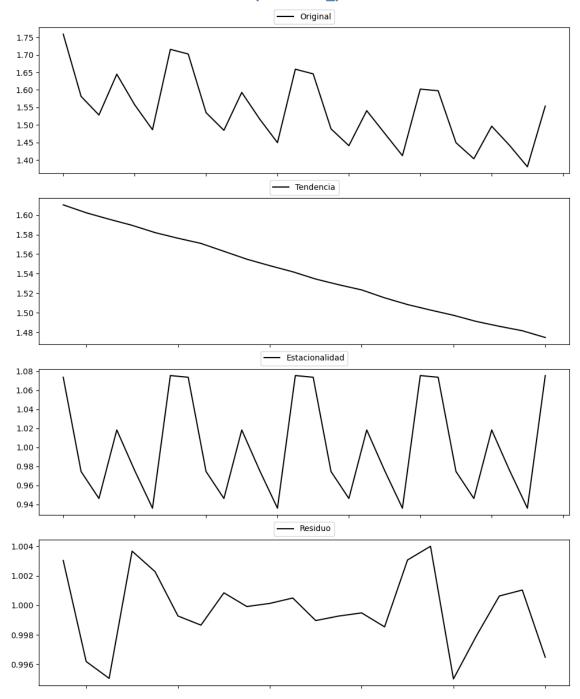
Análisis de Aleatoriedad del Error para SALF

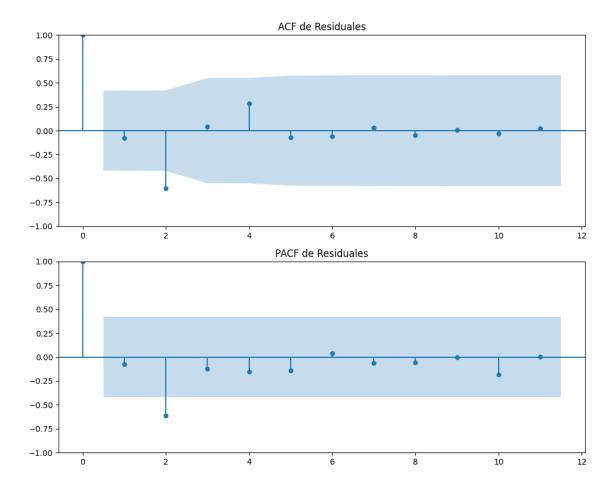
Estadística de Durbin-Watson: 2.0198

Prueba de Ljung-Box:

Estadísticos: 28.3842, p-valor: 0.0016

Prueba de Shapiro-Wilk: Estadístico=0.9207, p-valor=0.0011


Prueba de Dickey-Fuller aumentada: p-valor=0.0152


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para SALF

Gráficos para SALF_pasado

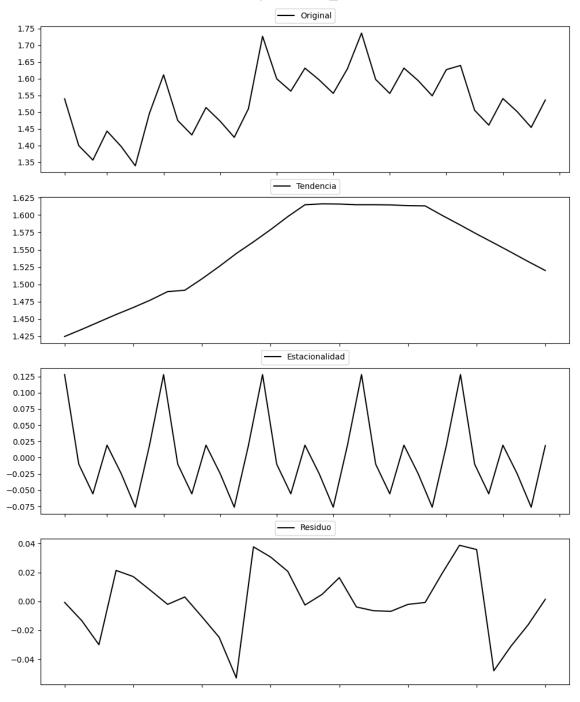
Análisis de Aleatoriedad del Error para SALF_pasado

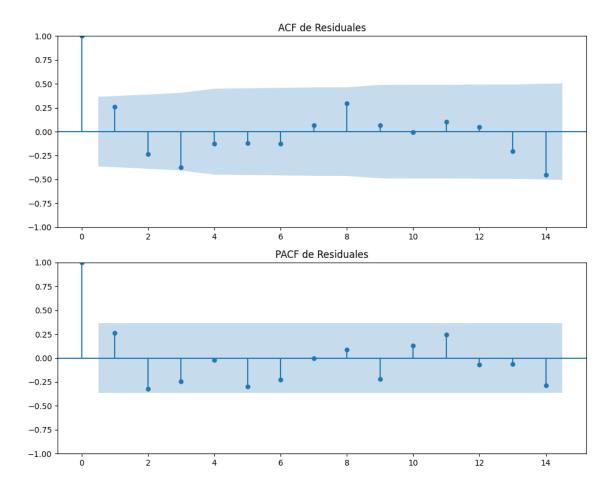
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 12.5106, p-valor: 0.2523

Prueba de Shapiro-Wilk: Estadístico=0.9622, p-valor=0.5343


Prueba de Dickey-Fuller aumentada: p-valor=0.0442


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para SALF

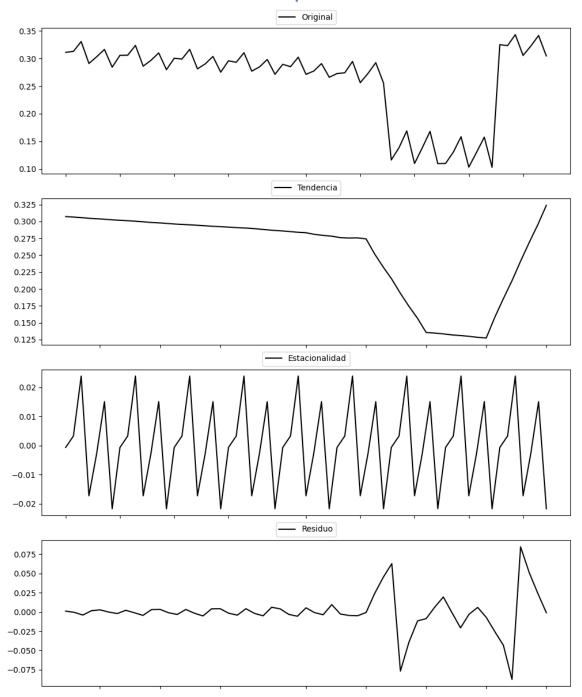
Gráficos para SALF_futuro

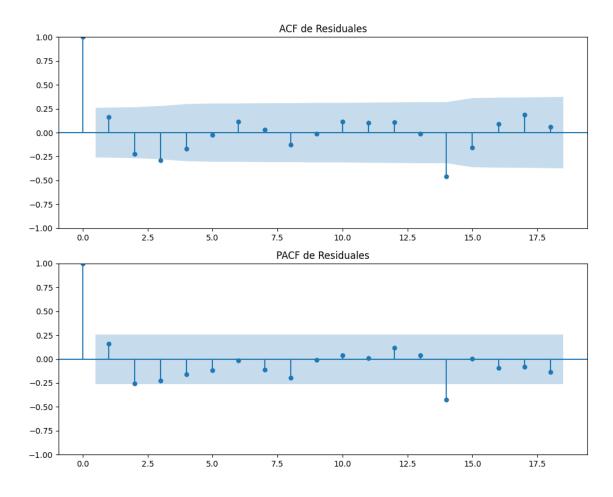
Análisis de Aleatoriedad del Error para SALF_futuro

Estadística de Durbin-Watson: 1.4780

Prueba de Ljung-Box:

Estadísticos: 14.7203, p-valor: 0.1426


Prueba de Shapiro-Wilk: Estadístico=0.9651, p-valor=0.4364


Prueba de Dickey-Fuller aumentada: p-valor=0.0006

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para CC

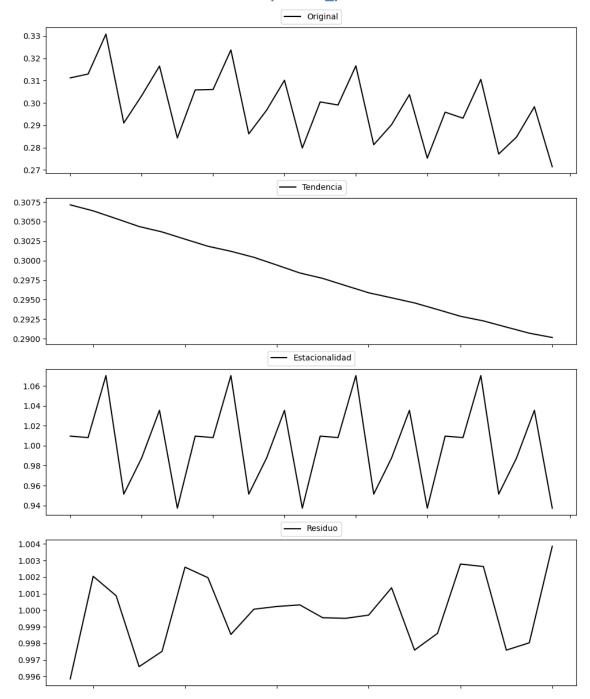
Análisis de Aleatoriedad del Error para CC

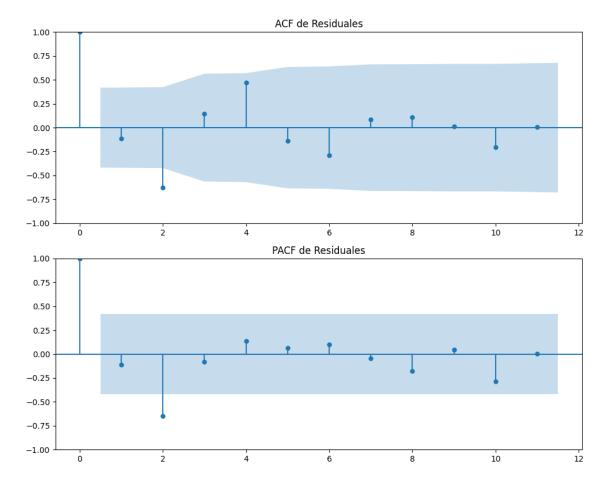
Estadística de Durbin-Watson: 1.6773

Prueba de Ljung-Box:

Estadísticos: 14.7696, p-valor: 0.1407

Prueba de Shapiro-Wilk: Estadístico=0.7767, p-valor=0.0000


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

Análisis de la Dinámica de Inercia Pasada para CC

Gráficos para CC_pasado

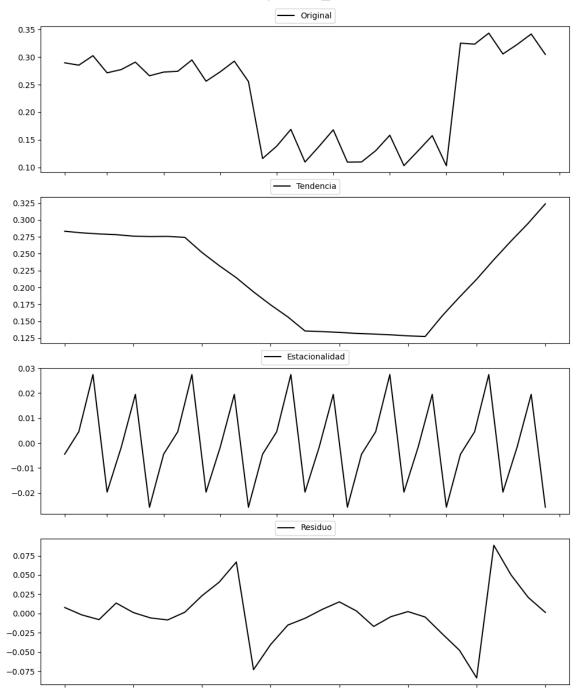
Análisis de Aleatoriedad del Error para CC_pasado

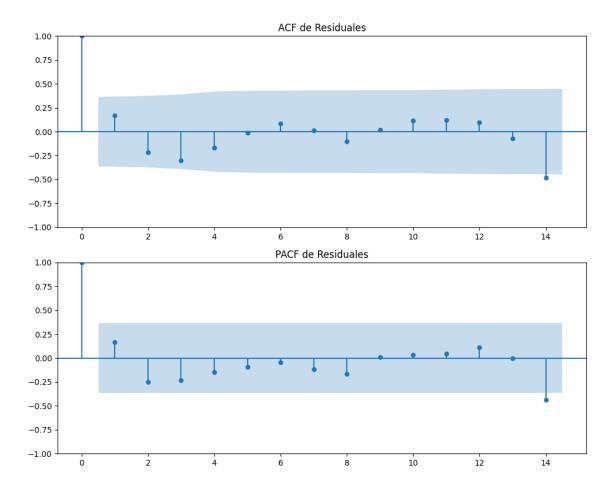
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 23.7750, p-valor: 0.0082

Prueba de Shapiro-Wilk: Estadístico=0.9734, p-valor=0.7892


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para CC

Gráficos para CC_futuro

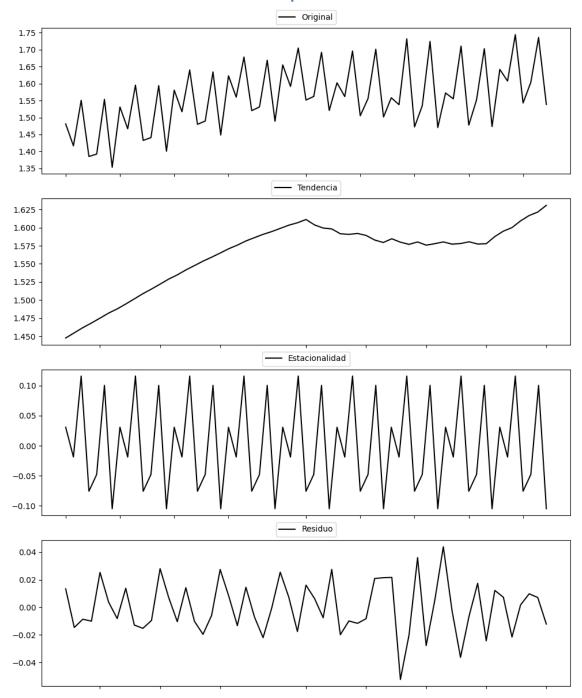
Análisis de Aleatoriedad del Error para CC_futuro

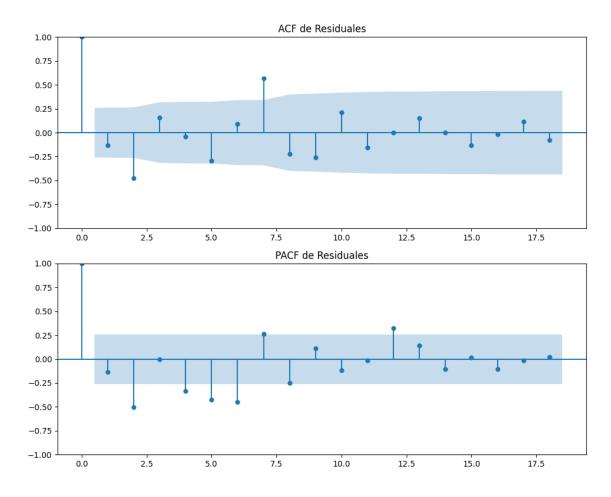
Estadística de Durbin-Watson: 1.6628

Prueba de Ljung-Box:

Estadísticos: 8.0275, p-valor: 0.6262

Prueba de Shapiro-Wilk: Estadístico=0.9393, p-valor=0.0962


Prueba de Dickey-Fuller aumentada: p-valor=0.0004


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

Gráficos para ERC

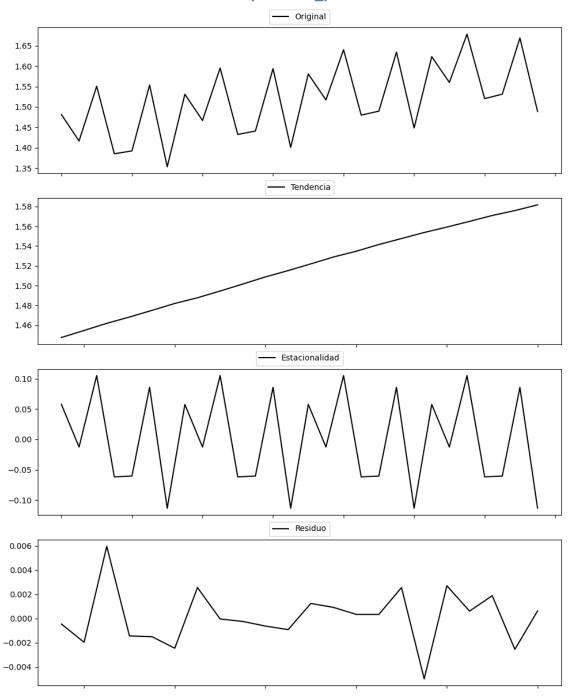
Análisis de Aleatoriedad del Error para ERC

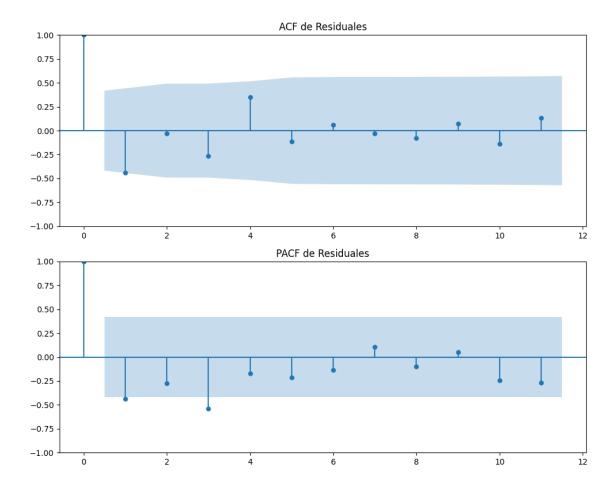
Estadística de Durbin-Watson: 2.2496

Prueba de Ljung-Box:

Estadísticos: 55.4216, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9841, p-valor=0.6564


Prueba de Dickey-Fuller aumentada: p-valor=0.7418


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para ERC

Gráficos para ERC_pasado

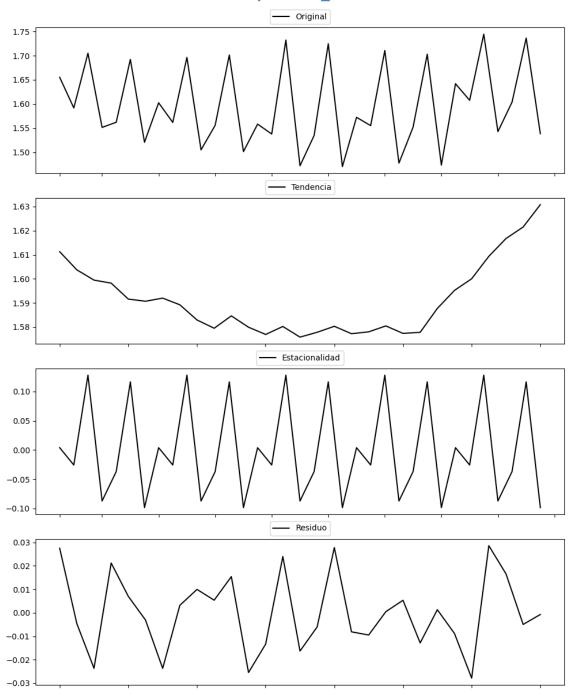
Análisis de Aleatoriedad del Error para ERC_pasado

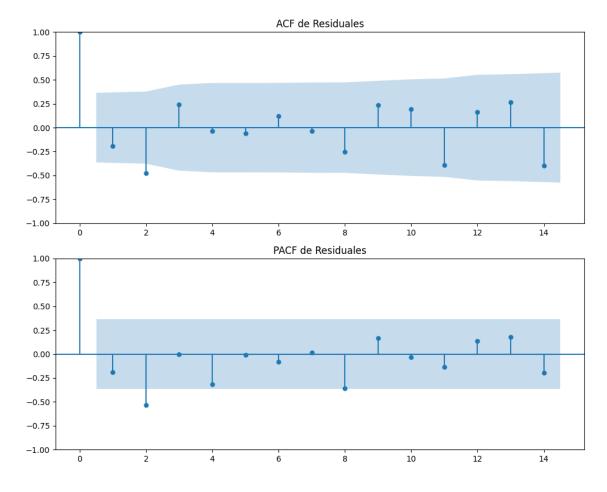
Estadística de Durbin-Watson: 2.8629

Prueba de Ljung-Box:

Estadísticos: 12.2311, p-valor: 0.2699

Prueba de Shapiro-Wilk: Estadístico=0.9737, p-valor=0.7942


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para ERC

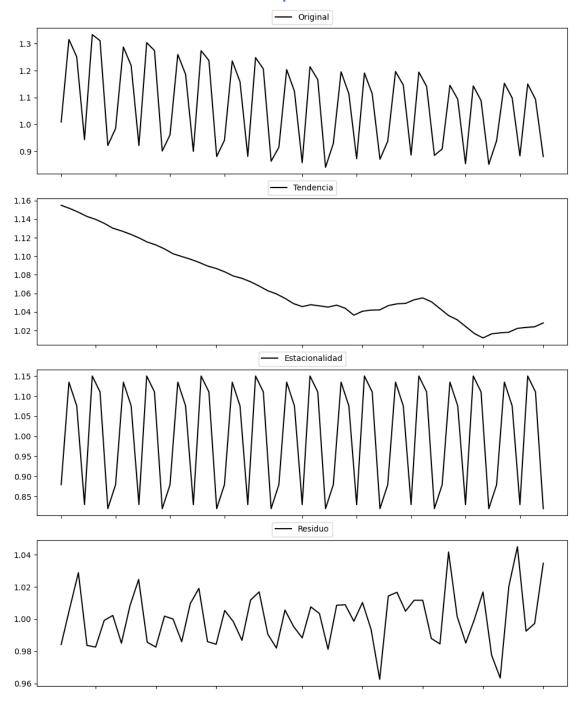
Gráficos para ERC_futuro

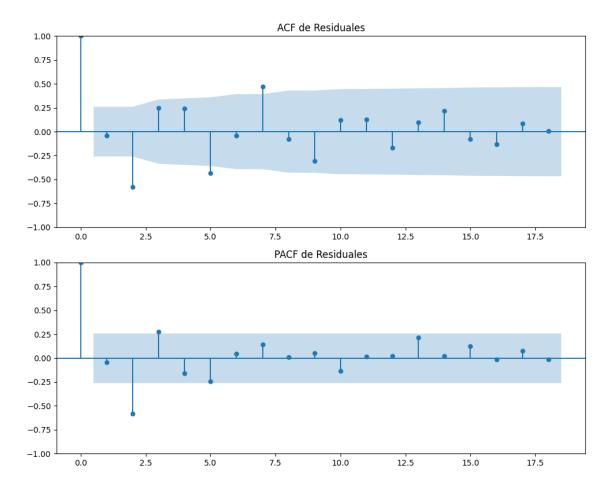
Análisis de Aleatoriedad del Error para ERC_futuro

Estadística de Durbin-Watson: 2.2859

Prueba de Ljung-Box:

Estadísticos: 18.5762, p-valor: 0.0460


Prueba de Shapiro-Wilk: Estadístico=0.9620, p-valor=0.3676


Prueba de Dickey-Fuller aumentada: p-valor=0.0213

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para JxCat

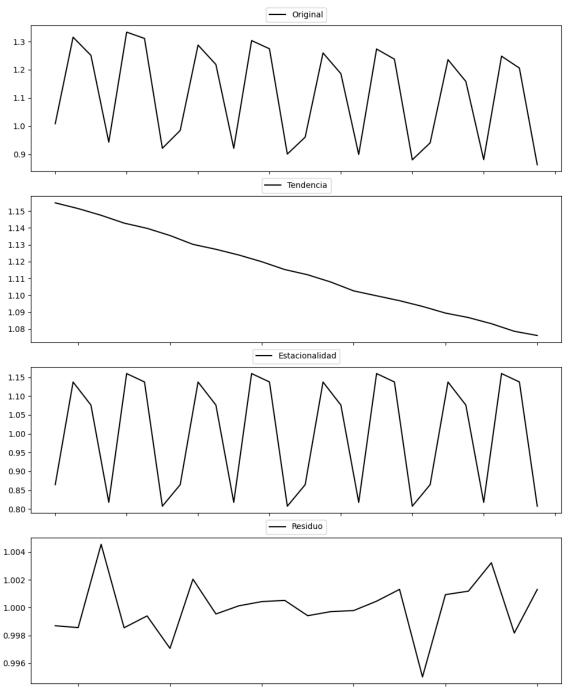
Análisis de Aleatoriedad del Error para JxCat

Estadística de Durbin-Watson: 0.0006

Prueba de Ljung-Box:

Estadísticos: 63.2667, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9736, p-valor=0.2454


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para JxCat

Gráficos para JxCat_pasado

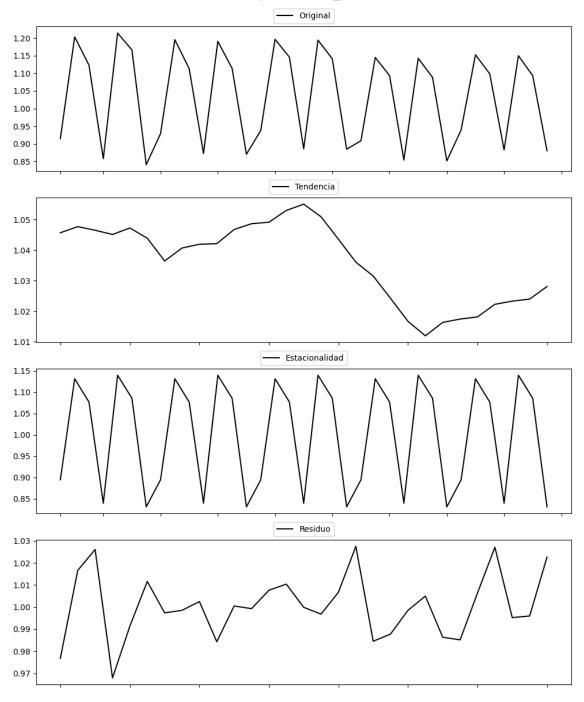
Análisis de Aleatoriedad del Error para JxCat_pasado

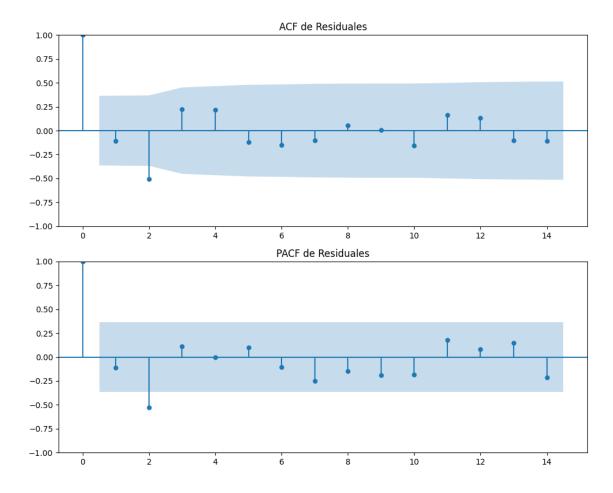
Estadística de Durbin-Watson: 0.0000

Prueba de Ljung-Box:

Estadísticos: 11.6226, p-valor: 0.3111

Prueba de Shapiro-Wilk: Estadístico=0.9727, p-valor=0.7724


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para JxCat

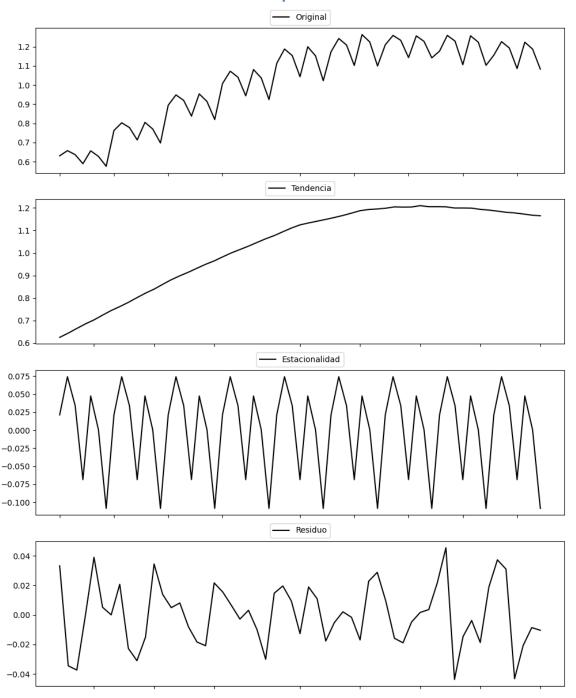
Gráficos para JxCat_futuro

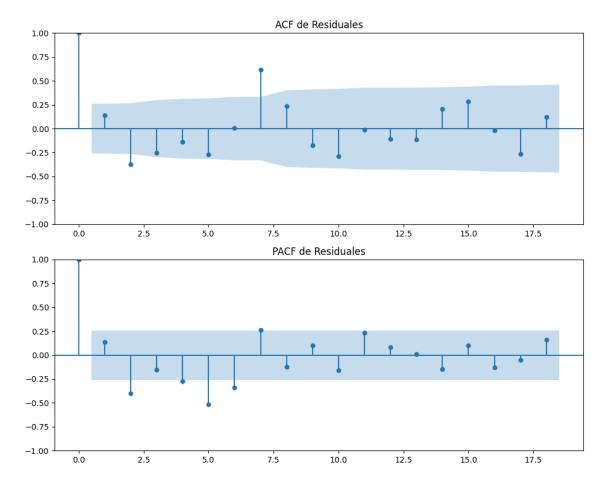
Análisis de Aleatoriedad del Error para JxCat_futuro

Estadística de Durbin-Watson: 0.0004

Prueba de Ljung-Box:

Estadísticos: 15.5264, p-valor: 0.1140


Prueba de Shapiro-Wilk: Estadístico=0.9728, p-valor=0.6380


Prueba de Dickey-Fuller aumentada: p-valor=0.0120

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

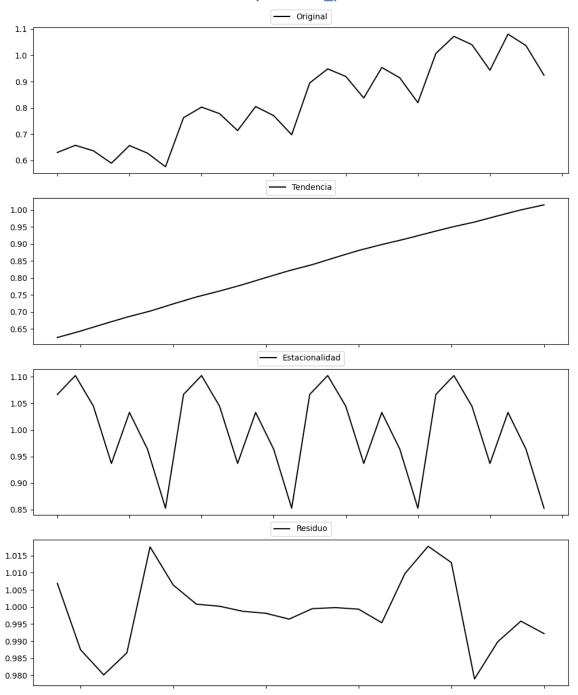
Gráficos para BNG

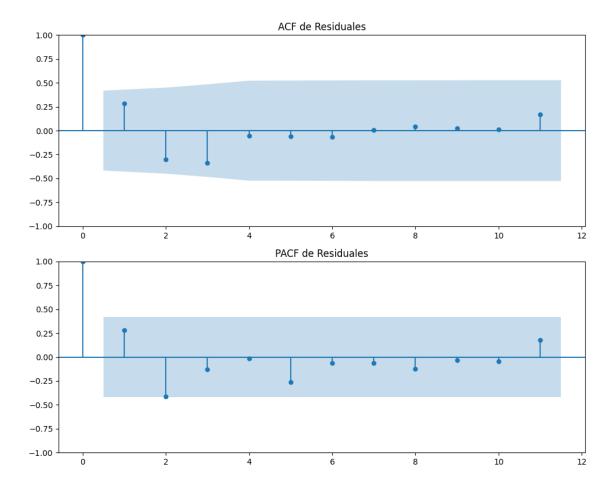
Análisis de Aleatoriedad del Error para BNG

Prueba de Ljung-Box:

Estadísticos: 56.8349, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9878, p-valor=0.8325


Prueba de Dickey-Fuller aumentada: p-valor=0.0001


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para BNG

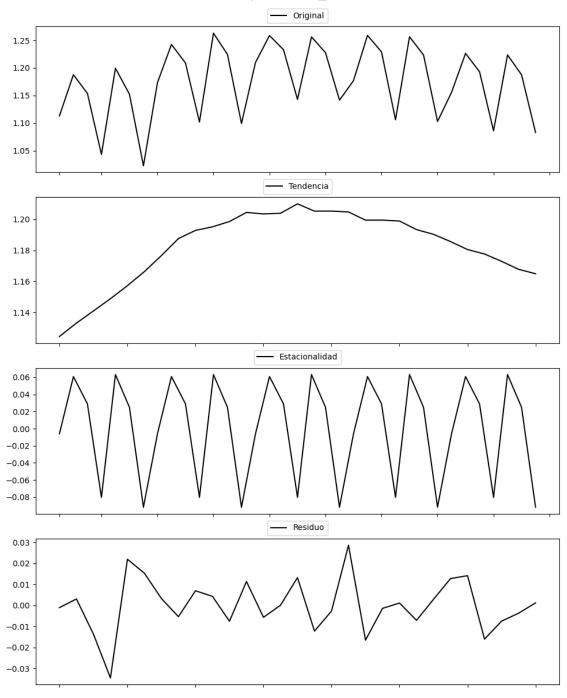
Gráficos para BNG_pasado

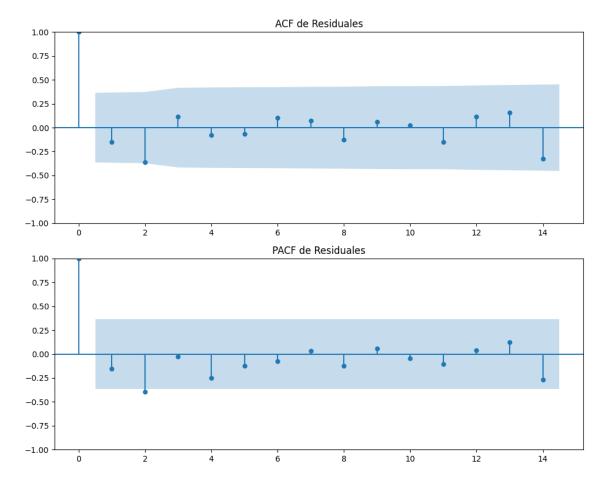
Análisis de Aleatoriedad del Error para BNG_pasado

Prueba de Ljung-Box:

Estadísticos: 7.9678, p-valor: 0.6320

Prueba de Shapiro-Wilk: Estadístico=0.9668, p-valor=0.6365


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para BNG

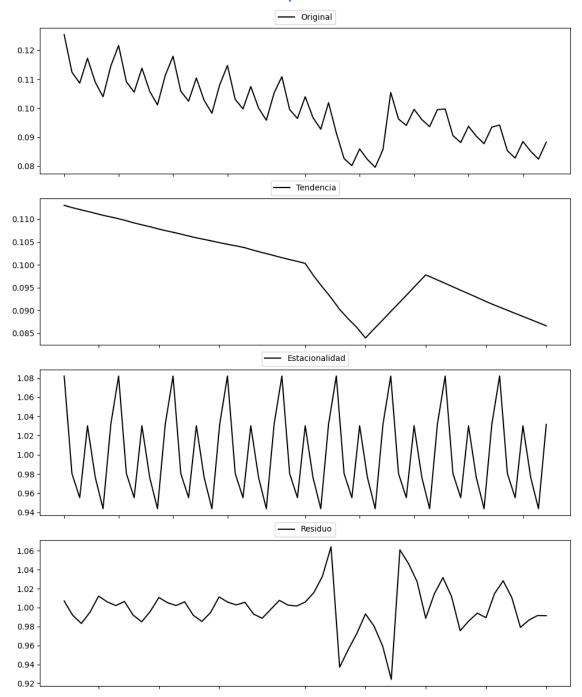
Gráficos para BNG_futuro

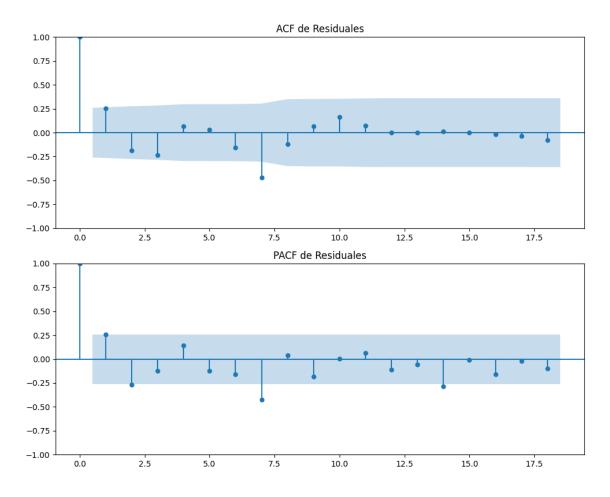
Análisis de Aleatoriedad del Error para BNG_futuro

Prueba de Ljung-Box:

Estadísticos: 7.4162, p-valor: 0.6857

Prueba de Shapiro-Wilk: Estadístico=0.9781, p-valor=0.7883


Prueba de Dickey-Fuller aumentada: p-valor=0.0004


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

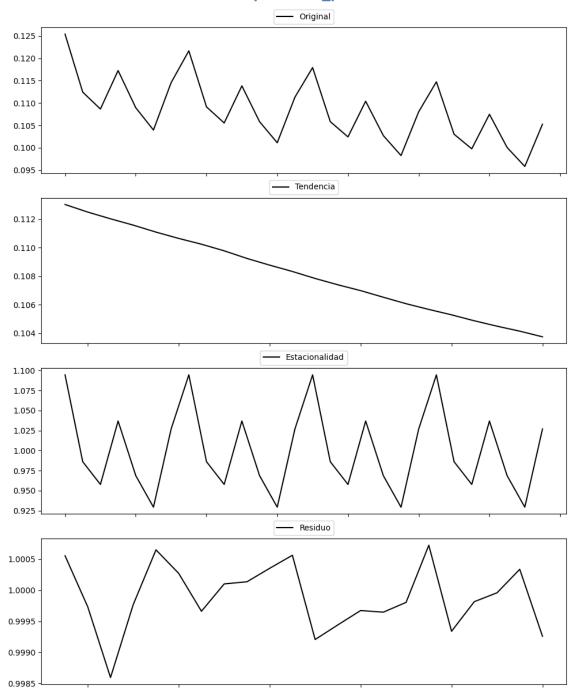
Gráficos para UPN

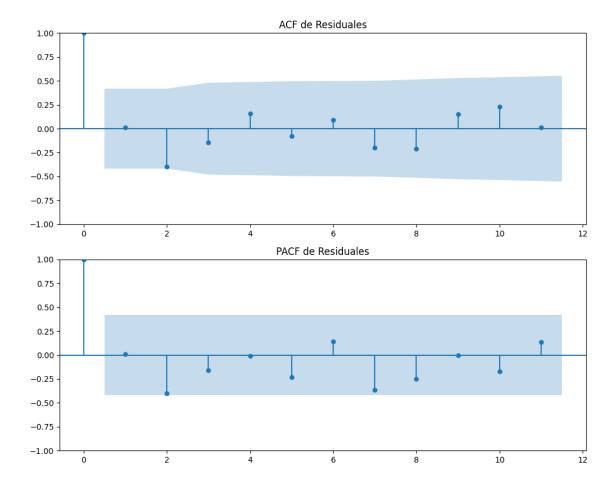
Análisis de Aleatoriedad del Error para UPN

Prueba de Ljung-Box:

Estadísticos: 29.7160, p-valor: 0.0010

Prueba de Shapiro-Wilk: Estadístico=0.9367, p-valor=0.0051


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para UPN

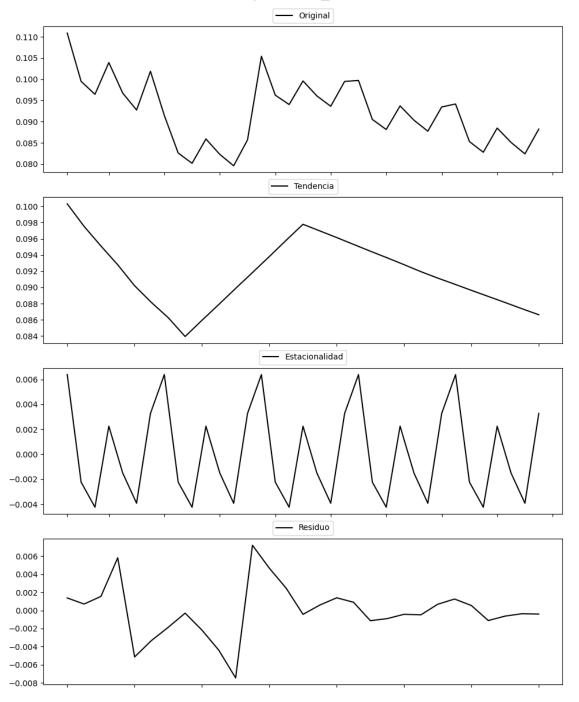
Gráficos para UPN_pasado

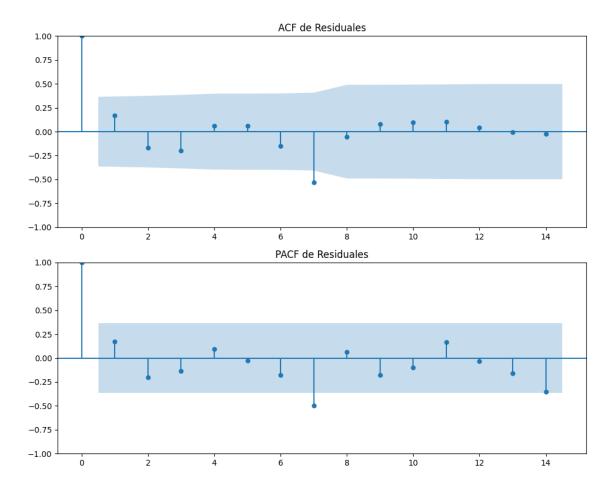
Análisis de Aleatoriedad del Error para UPN_pasado

Prueba de Ljung-Box:

Estadísticos: 12.2028, p-valor: 0.2717

Prueba de Shapiro-Wilk: Estadístico=0.9668, p-valor=0.6382


Prueba de Dickey-Fuller aumentada: p-valor=0.4158


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para UPN

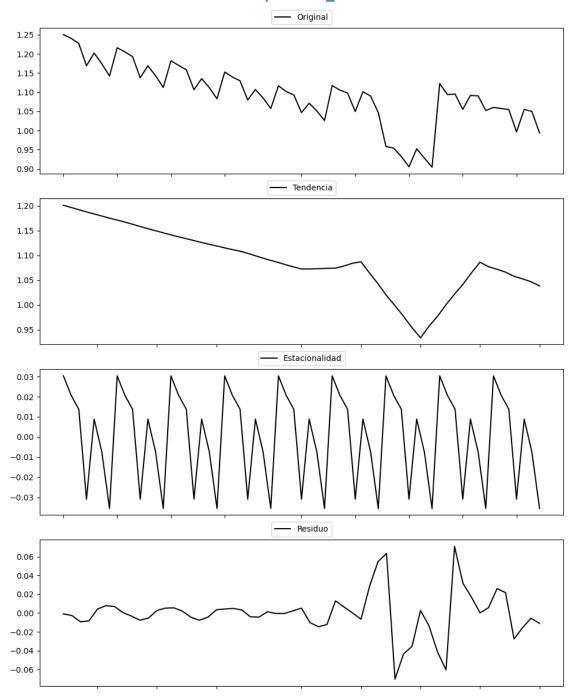
Gráficos para UPN_futuro

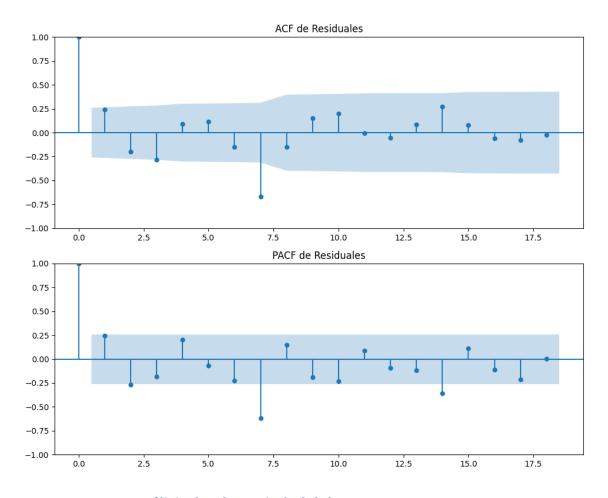
Análisis de Aleatoriedad del Error para UPN_futuro

Prueba de Ljung-Box:

Estadísticos: 16.6258, p-valor: 0.0831

Prueba de Shapiro-Wilk: Estadístico=0.9448, p-valor=0.1343


Prueba de Dickey-Fuller aumentada: p-valor=0.0099


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

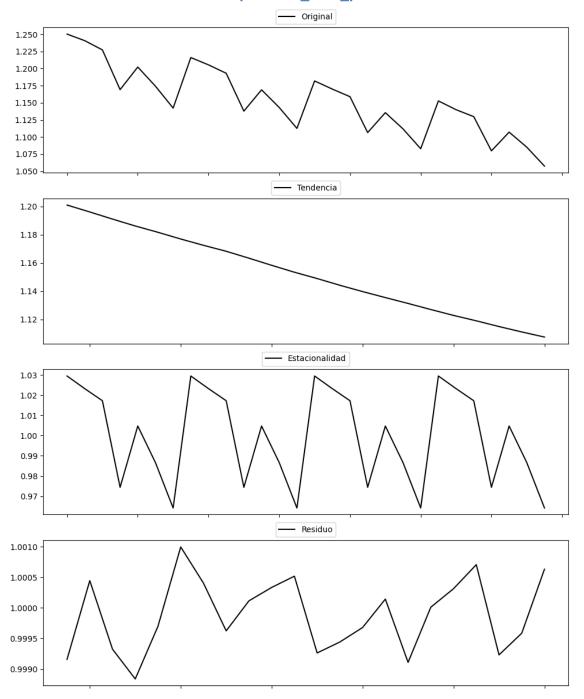
Gráficos para EAJ_PNV

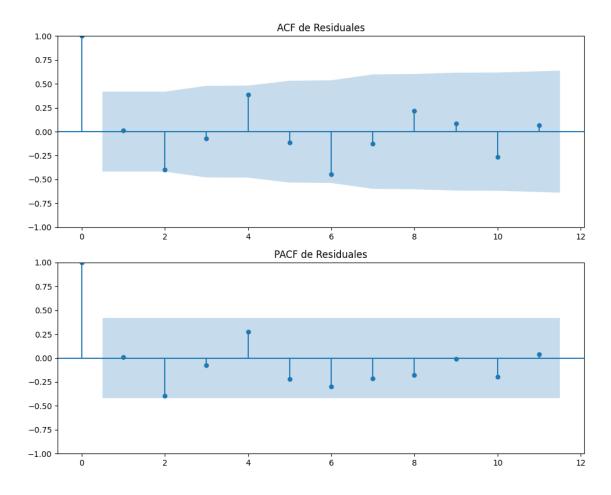
Análisis de Aleatoriedad del Error para EAJ_PNV

Prueba de Ljung-Box:

Estadísticos: 49.9833, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.8807, p-valor=0.0000


Prueba de Dickey-Fuller aumentada: p-valor=0.0003


Estacionariedad: Estacionario

Se detectó heterocedasticidad en los residuos (Prueba de Breusch-Pagan significativa).

Análisis de la Dinámica de Inercia Pasada para EAJ_PNV

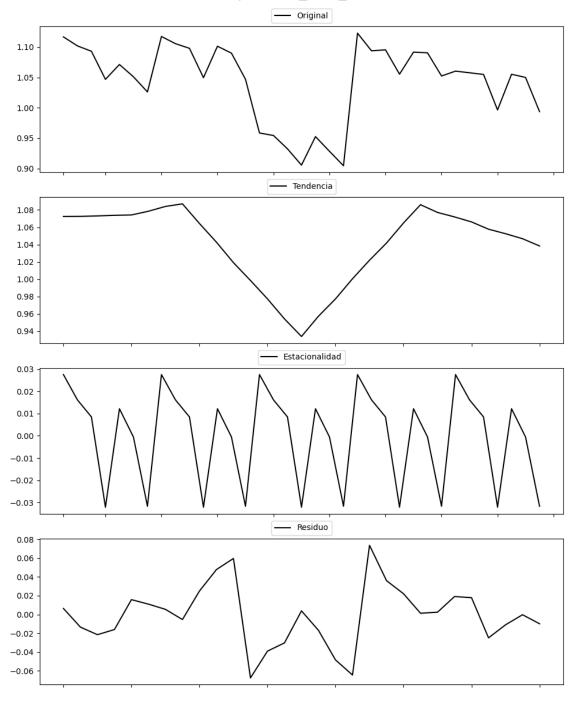
Gráficos para EAJ_PNV_pasado

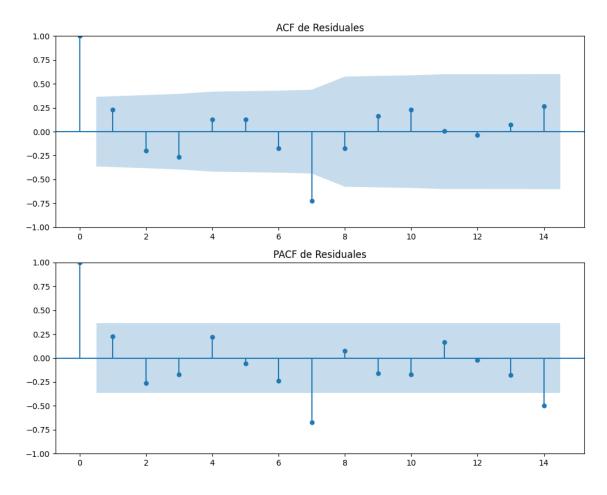
Análisis de Aleatoriedad del Error para EAJ_PNV_pasado

Prueba de Ljung-Box:

Estadísticos: 21.4054, p-valor: 0.0184

Prueba de Shapiro-Wilk: Estadístico=0.9602, p-valor=0.4925


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

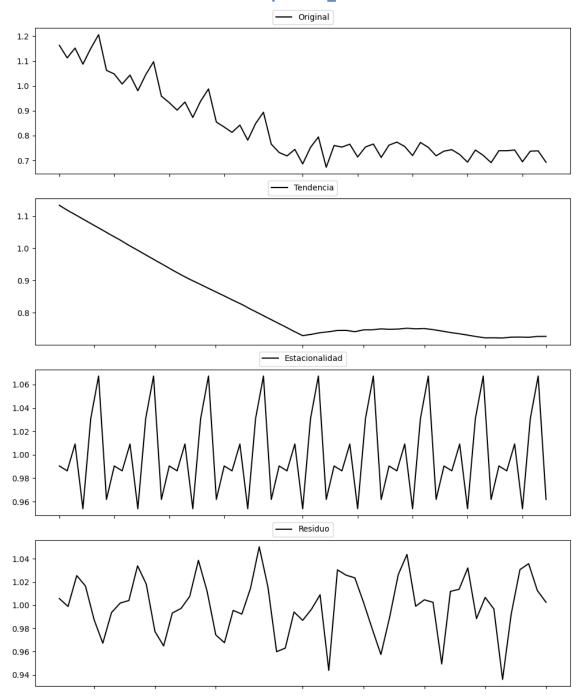
Análisis de la Dinámica de Inercia Presente_Futuro para EAJ_PNV

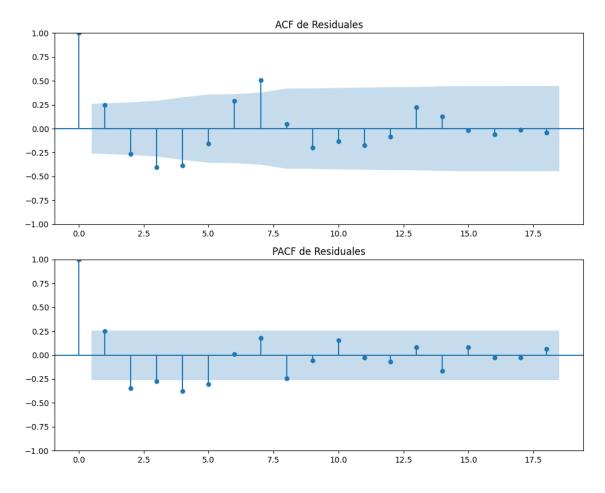
Gráficos para EAJ_PNV_futuro

Análisis de Aleatoriedad del Error para EAJ_PNV_futuro

Prueba de Ljung-Box:

Estadísticos: 34.3227, p-valor: 0.0002


Prueba de Shapiro-Wilk: Estadístico=0.9838, p-valor=0.9222


Prueba de Dickey-Fuller aumentada: p-valor=0.0006

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

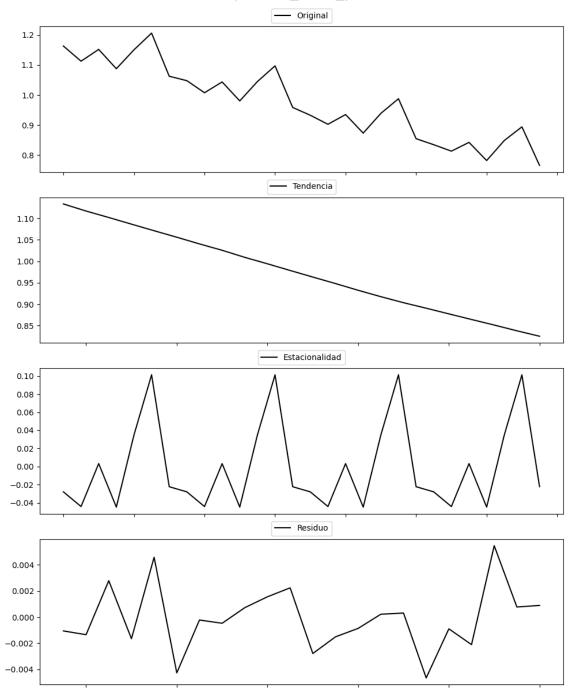
Gráficos para EH_Bildu

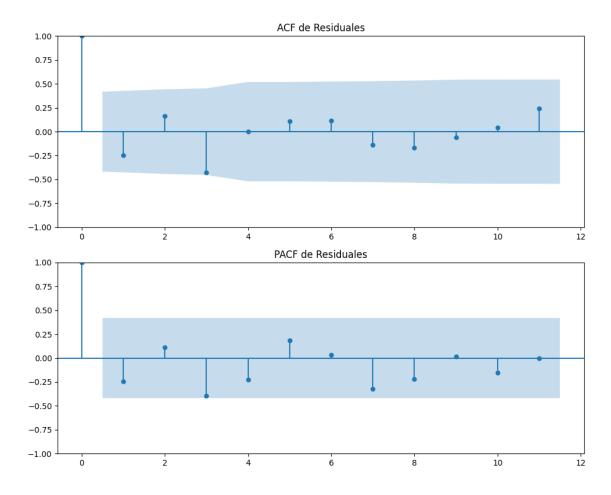
Análisis de Aleatoriedad del Error para EH_Bildu

Prueba de Ljung-Box:

Estadísticos: 56.0043, p-valor: 0.0000

Prueba de Shapiro-Wilk: Estadístico=0.9778, p-valor=0.3765


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para EH_Bildu

Gráficos para EH_Bildu_pasado

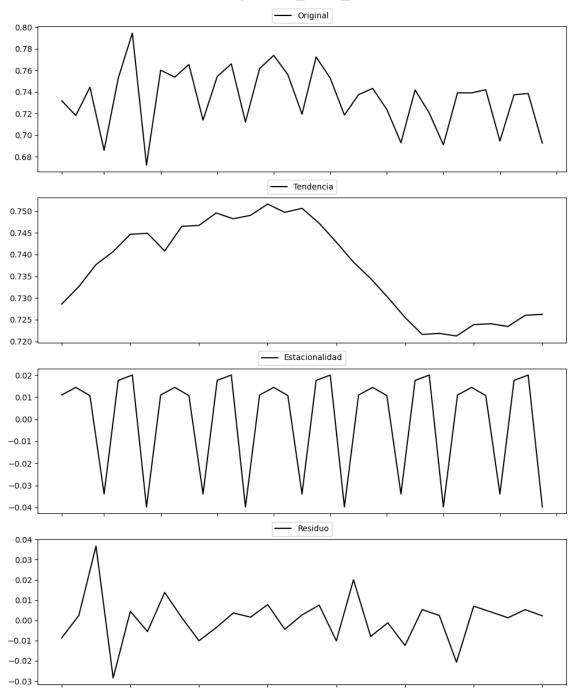
Análisis de Aleatoriedad del Error para EH_Bildu_pasado

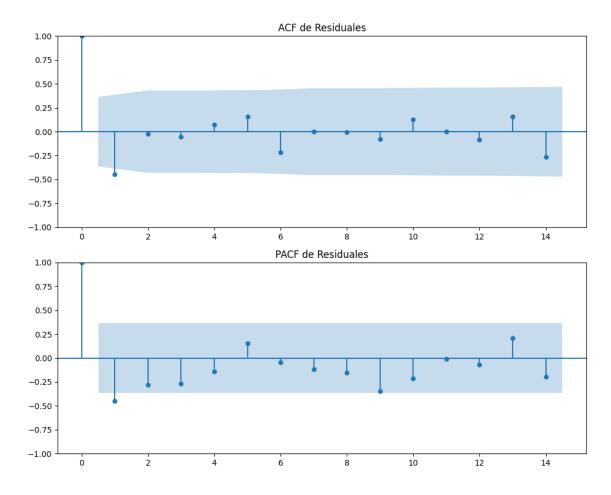
Prueba de Ljung-Box:

Estadísticos: 10.2146, p-valor: 0.4219

Prueba de Shapiro-Wilk: Estadístico=0.9726, p-valor=0.7696

Prueba de Dickey-Fuller aumentada: p-valor=0.0031


Estacionariedad: Estacionario


No se detectó heterocedasticidad significativa en los residuos.

Los residuales parecen ser aleatorios.

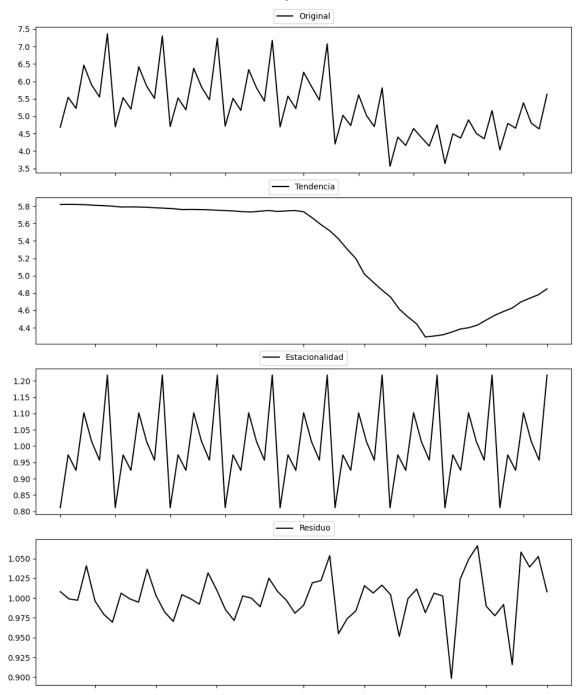
Análisis de la Dinámica de Inercia Presente_Futuro para EH_Bildu

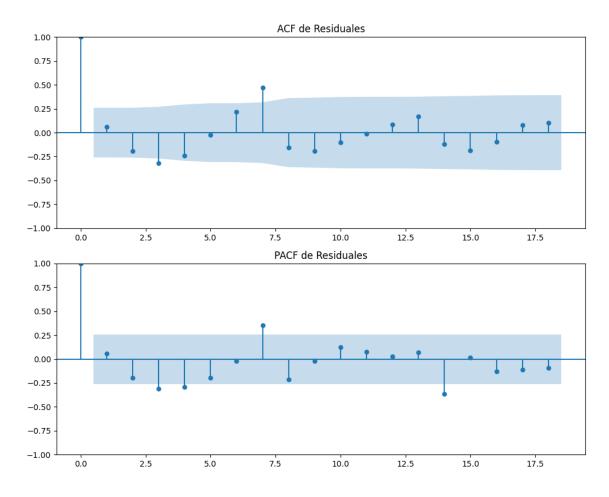
Gráficos para EH_Bildu_futuro

Análisis de Aleatoriedad del Error para EH_Bildu_futuro

Prueba de Ljung-Box:

Estadísticos: 10.5387, p-valor: 0.3946


Prueba de Shapiro-Wilk: Estadístico=0.9302, p-valor=0.0558


Prueba de Dickey-Fuller aumentada: p-valor=0.0053

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

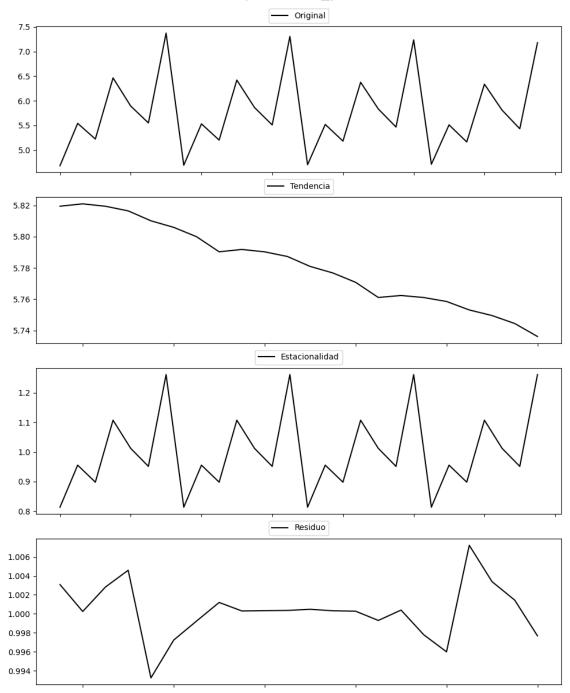
Gráficos para Otros

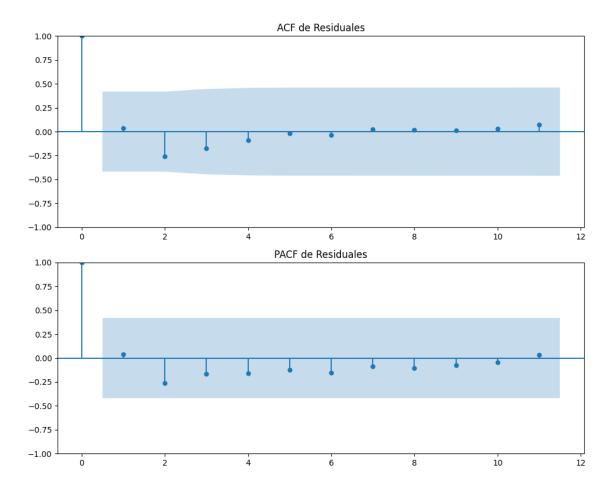
Análisis de Aleatoriedad del Error para Otros

Prueba de Ljung-Box:

Estadísticos: 35.4979, p-valor: 0.0001

Prueba de Shapiro-Wilk: Estadístico=0.9462, p-valor=0.0133


Prueba de Dickey-Fuller aumentada: p-valor=0.0635


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para Otros

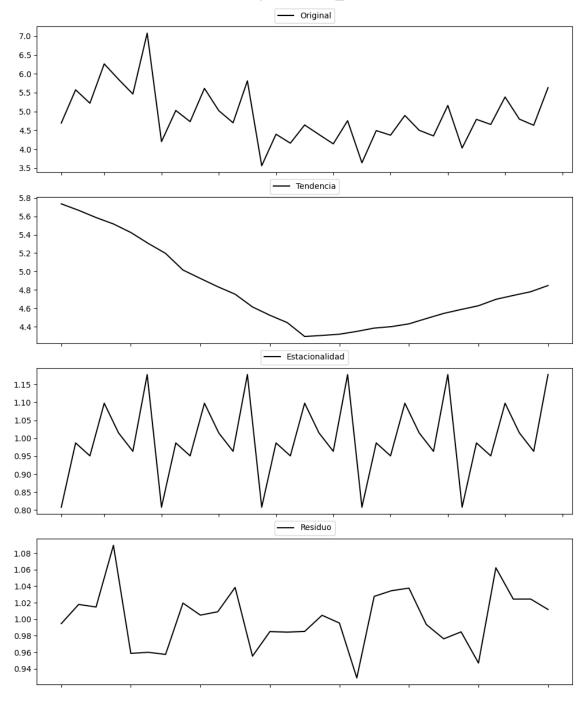
Gráficos para Otros_pasado

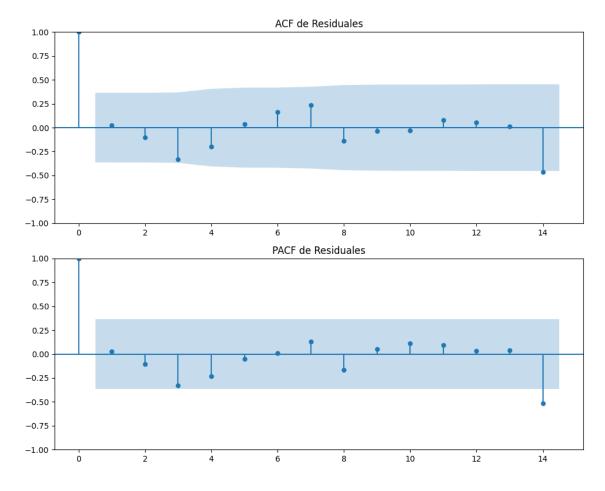
Análisis de Aleatoriedad del Error para Otros_pasado

Prueba de Ljung-Box:

Estadísticos: 3.0066, p-valor: 0.9813

Prueba de Shapiro-Wilk: Estadístico=0.9587, p-valor=0.4638


Prueba de Dickey-Fuller aumentada: p-valor=0.6554


Estacionariedad: No Estacionario

No se detectó heterocedasticidad significativa en los residuos.

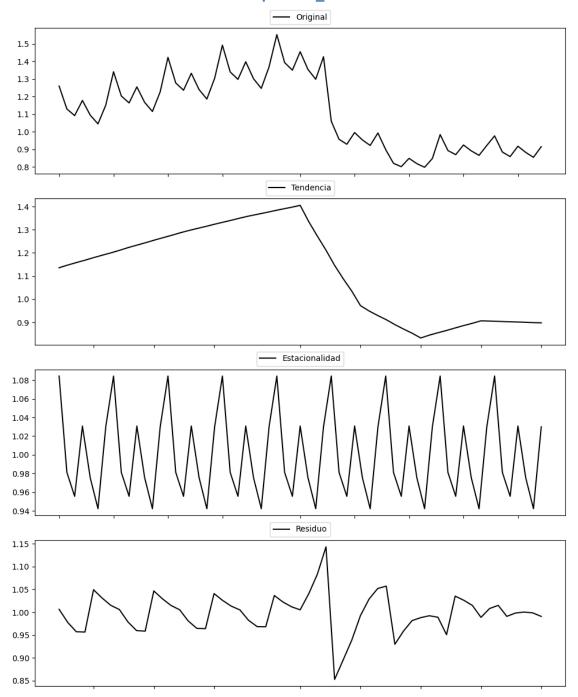
Análisis de la Dinámica de Inercia Presente_Futuro para Otros

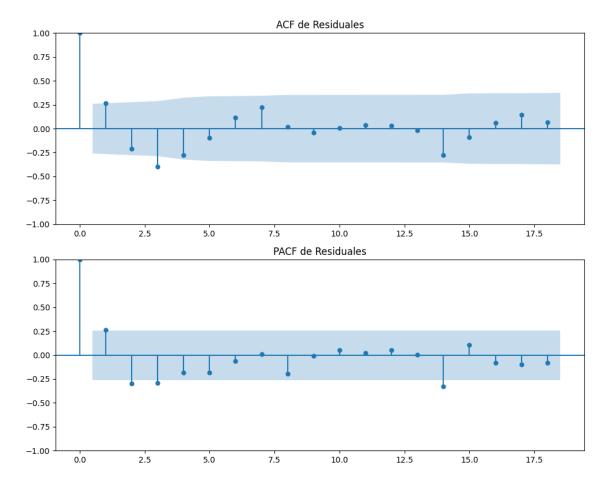
Gráficos para Otros_futuro

Análisis de Aleatoriedad del Error para Otros_futuro

Prueba de Ljung-Box:

Estadísticos: 9.9483, p-valor: 0.4450


Prueba de Shapiro-Wilk: Estadístico=0.9841, p-valor=0.9272


Prueba de Dickey-Fuller aumentada: p-valor=0.0000

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Gráficos para En_blanco

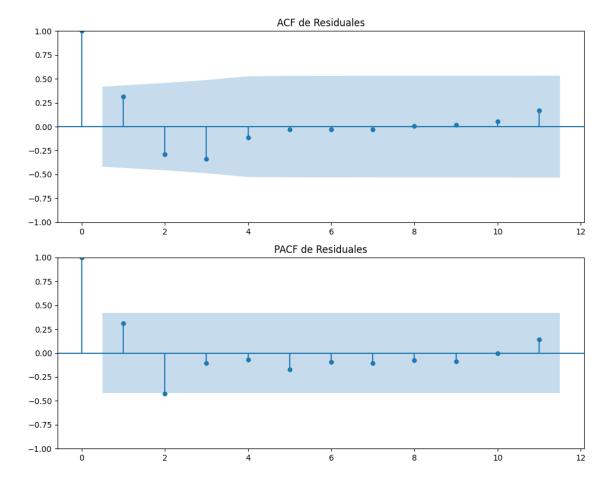
Análisis de Aleatoriedad del Error para En_blanco

Prueba de Ljung-Box:

Estadísticos: 26.7434, p-valor: 0.0029

Prueba de Shapiro-Wilk: Estadístico=0.9550, p-valor=0.0334


Prueba de Dickey-Fuller aumentada: p-valor=0.0000


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Pasada para En_blanco

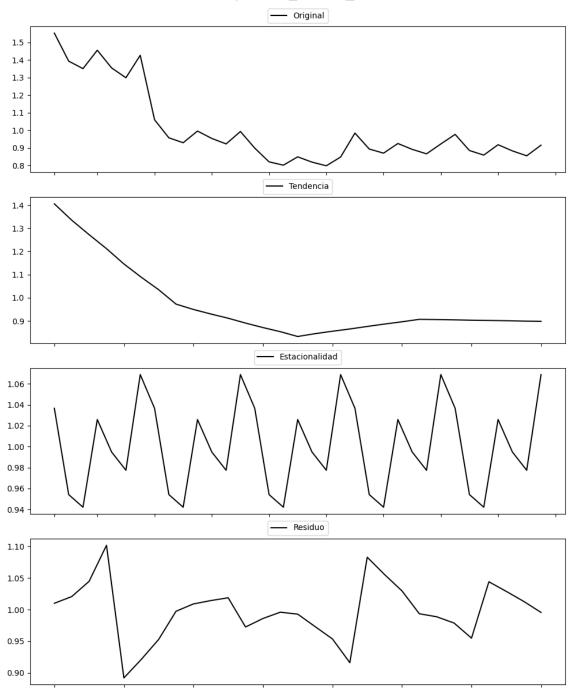
Gráficos para En_blanco_pasado

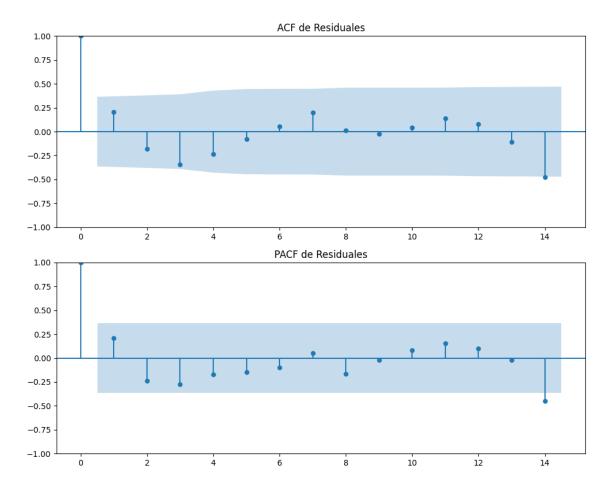
Análisis de Aleatoriedad del Error para En_blanco_pasado

Prueba de Ljung-Box:

Estadísticos: 8.4114, p-valor: 0.5887

Prueba de Shapiro-Wilk: Estadístico=0.9695, p-valor=0.6999


Prueba de Dickey-Fuller aumentada: p-valor=0.0025


Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Análisis de la Dinámica de Inercia Presente_Futuro para En_blanco

Gráficos para En_blanco_futuro

Análisis de Aleatoriedad del Error para En_blanco_futuro

Prueba de Ljung-Box:

Estadísticos: 10.6055, p-valor: 0.3891

Prueba de Shapiro-Wilk: Estadístico=0.9828, p-valor=0.9025

Prueba de Dickey-Fuller aumentada: p-valor=0.0008

Estacionariedad: Estacionario

No se detectó heterocedasticidad significativa en los residuos.

Interacción de la estructura de inercia y los patrones de incertidumbre

Escenarios	Tipo de	AIC	BIC	AIC	BIC	Inercia
	Patrón	Aditivo	Aditivo	Multiplicativo	Multiplicativo	(Multiplicativa)
PSOE	Multiplicative	-172.91	-153.62	-175.62	-156.33	Creciente
PP	Multiplicative	-220.63	-201.35	-220.94	-201.66	Decreciente
VOX	Multiplicative	-273.43	-254.14	-275.88	-256.59	Decreciente
Podemos	Additive	-339.86	-320.57	-335.37	-316.08	N/A
Sumar	Additive	-333.05	-313.76	-328.54	-309.25	N/A
SALF	Additive	-401.53	-382.24	-393.68	-374.39	N/A
CC	Additive	-410.87	-391.58	-404.29	-385.01	N/A
ERC	Additive	-454.38	-435.10	-451.74	-432.45	N/A
JxCat	Multiplicative	-480.26	-460.97	-489.84	-470.55	Decreciente
BNG	Additive	-420.38	-401.09	-417.51	-398.23	N/A
UPN	Multiplicative	-700.87	-681.59	-711.38	-692.09	Decreciente
EAJ_PNV	Additive	-424.43	-405.14	-421.42	-402.13	N/A
EH_Bildu	Multiplicative	-434.00	-414.71	-444.21	-424.92	Creciente
Otros	Multiplicative	-174.86	-155.57	-207.82	-188.53	Creciente
En_blanco	Multiplicative	-316.71	-297.42	-320.07	-300.78	Decreciente

Tabla de Coeficiente de Variación (CV)

Partido	CV	Homogeneida	CV	Homogeneida	CV	Homogeneida
	(Inercia	d (Inercia)	(Incertidumbre	d	(Estimación	d
))	(Incertidumbre)	(Estimación)
)		
PSOE	4.95	Homogéneo	0.66	Homogéneo	5.61	Homogéneo
PP	2.30	Homogéneo	0.80	Homogéneo	3.10	Homogéneo
VOX	4.84	Homogéneo	1.19	Homogéneo	6.03	Homogéneo
Podemos	3.08	Homogéneo	0.98	Homogéneo	4.06	Homogéneo
Sumar	3.32	Homogéneo	1.27	Homogéneo	4.59	Homogéneo
SALF	3.85	Homogéneo	2.38	Homogéneo	6.22	Homogéneo
CC	24.43	Homogéneo	3.18	Homogéneo	27.60	Homogéneo
ERC	2.93	Homogéneo	3.20	Homogéneo	6.13	Homogéneo
JxCat	3.81	Homogéneo	10.75	Homogéneo	14.56	Homogéneo
BNG	17.77	Homogéneo	2.59	Homogéneo	20.36	Homogéneo
UPN	8.55	Homogéneo	2.39	Homogéneo	10.93	Homogéneo
EAJ_PN	5.85	Homogéneo	1.40	Homogéneo	7.25	Homogéneo
V		_		_		_
EH_Bildu	15.31	Homogéneo	2.11	Homogéneo	17.42	Homogéneo
Otros	10.91	Homogéneo	5.60	Homogéneo	16.51	Homogéneo
En_blanc	17.40	Homogéneo	1.57	Homogéneo	18.97	Homogéneo
О						

6. Referencias

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2025). *Informe técnico de la estimación del Estudio 3505. Barómetro de abril 2025.* Documentación técnica de la estimación electoral. Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid.

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2025). *Informe técnico de la estimación del Estudio 3502. Barómetro de marzo 2025.* Documentación técnica de la estimación electoral. Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid.

Alaminos, Antonio y Alaminos-Fernández, Antonio (2025) *Introducción conceptual a la medición de la ideología polític*a. Alicante: Obets Ciencia Abierta. ISBN: 978-84-129745-1-5 http://hdl.handle.net/10045/152661

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2025). *Modelo Bifactorial Inercia-Incertidumbre para Dummies*. Alicante: Obets Ciencia Abierta. ISBN 978-84-129745-2-2, 372 p.

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2025). *Informe técnico de la estimación del Estudio 3496. Barómetro de febrero 2025.* Documentación técnica de la estimación electoral. Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid.

Alaminos, Antonio (2025) Encuestas de opinión pública y medios de comunicación en España. Un estudio sobre saltos de fe, flogisto, quimeras tecnológicas, mercenarios y avestruces. Alicante: Obets Ciencia Abierta. http://hdl.handle.net/10045/151044

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2025). *Informe técnico de la estimación del Estudio 3492. Barómetro de enero 2025.* Documentación técnica de la estimación electoral. Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid.

Alaminos, Antonio (2024) *Introduction to Measuring Electoral Support Using the Scenario Method Inertia-Uncertainty Bifactorial Model*. Alicante: Obets Ciencia Abierta. https://rua.ua.es/dspace/handle/10045/145061

Alaminos, Antonio (2024) *Introduzione alla misurazione del sostegno elettorale utilizzando il metodo dello scenario Modello bifattoriale inerzia-incertezza*. Alicante: Obets Ciencia Abierta. https://rua.ua.es/dspace/handle/10045/145078

Alaminos, Antonio (2024) *Introduction à la mesure du soutien électoral à l'aide de la méthode des scénarios Modèle bifactoriel inertie-incertitude*. Alicante: Obets Ciencia Abierta. https://rua.ua.es/dspace/handle/10045/145062

Alaminos, Antonio (2024) *Introdução à Medição do Apoio Eleitoral Usando o Método do Cenário Modelo Bifatorial Inércia-Incerteza*. Alicante: Obets Ciencia Abierta. https://rua.ua.es/dspace/handle/10045/145060

Alaminos, Antonio (2024) Einführung in die Messung der Wahlunterstützung mit der Szenario-Methode Bifaktorielles Trägheits-Unschärfe-Modell. Alicante: Obets Ciencia Abierta. https://rua.ua.es/dspace/handle/10045/145059

Alaminos, Antonio (2024) *Introducción a la medición de apoyos electorales mediante el método de escenarios. Modelo bifactorial Inercia-Incertidumbre*. Alicante: Obets Ciencia Abierta. https://rua.ua.es/dspace/handle/10045/147302

Alaminos, Antonio (2022) El método de escenarios en la estimación de resultados electorales. Una aplicación al caso de Castilla y León. *Revista Española de Investigaciones Sociológicas* 178: 173-182. https://doi.org/10.5477/cis/reis.178.173

Alaminos, Antonio (2021) Las dinámicas de cambio en el comportamiento del electorado en España. Sistema: revista de ciencias sociales, Nº 260, págs. 17-34

Alaminos, Antonio (2019) Las elecciones europeas de 2019 en España. *Temas para el debate*, N°. 295 (junio), págs. 14-15

Alaminos, Antonio (2018) La monitorización de la estimación de voto con modelos ponderados y no ponderados: un test empírico. *Sociologiados: Revista de investigación social*, ISSN-e 2445-2661, Vol. 3, Nº. 1, págs. 145-174

Alaminos, Antonio (2017) La imagen de partido del Partido Popular y el Partido Socialista Obrero Español en España: 1996 al 2015. *Sociologiados. Revista de Investigación Social.* 2(1): 51-79. doi:10.14198/socdos.2017.1.04

Alaminos, Antonio (2015) Forecasting Elections with High Volatility. *Statistica Applicata - Italian Journal of Applied Statistics*. 2015, 25(2): 165-184 http://hdl.handle.net/10045/51768

Alaminos, Antonio (1998) *Teoría y práctica de la encuesta. Aplicación en los países en vías de desarrollo*. Alicante: Editorial Club Universitario, ISBN 84-95015-10-2. http://hdl.handle.net/10045/49236

Alaminos, Antonio (1998) Las predicciones electorales en España. En: Alaminos, Antonio, et al. *Future Days. Modelos de prospectiva electoral*. Alicante: Universidad de Alicante. ISBN 978-84-7908-407-3. http://hdl.handle.net/10045/105229

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2024) Análisis de las dinámicas electorales en las elecciones autonómicas de Galicia del 18 de febrero de 2024. Modelo Bifactorial Inercia-Incertidumbre. Número 81. *Opiniones y Actitudes*. Madrid:CIS

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2024) *Estudio ECIS3460 sobre las elecciones europeas de 2024. Documentación técnica de la estimación electoral.* Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2024) *Las elecciones autonómicas del País Vasco del 21 de abril de 2024. Modelo Bifactorial Inercia-Incertidumbre*. Alicante: Obets Ciencia Abierta.

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2024). *Teoría de juegos y Modelo Bifactorial-Inercia Incertidumbre. Aplicación al análisis de escenarios electorales*. Alicante: Obets Ciencia Abierta

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2024) *La medición de los efectos de las campañas electorales. Aplicación del Modelo Bifactorial-Inercia Incertidumbre*. Alicante: Obets Ciencia Abierta. https://rua.ua.es/dspace/handle/10045/147300

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2024). *Informe técnico de la estimación del Estudio 4389. Barómetro de diciembre 2024*. Documentación técnica de la estimación electoral. Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid.

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2024). *Informe técnico de la estimación del Estudio 3485. Barómetro de noviembre 2024. Documentación técnica de la estimación electoral.* Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid.

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2024). *Informe técnico de la estimación del Estudio 3478. Barómetro de octubre 2024. Documentación técnica de la estimación electoral.* Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid.

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2024). *Estudio Barómetro ECIS3474 de septiembre 2024. Documentación técnica de la estimación electoral*. Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2024). *Estudio Barómetro ECIS3468 de julio 2024. Documentación técnica de la estimación electoral.* Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid

Alaminos, Antonio, y Alaminos-Fernández, Antonio F°. (2024). *Estudio Barómetro ECIS3463 de junio 2024. Documentación técnica de la estimación electoral*. Departamento de Investigación. Centro de Investigaciones Sociológicas. Madrid

Alaminos, Antonio y Alaminos-Fernández, Antonio Fº (2023) Modelo Bifactorial Inercia-Incertidumbre Alaminos-Tezanos. Aplicación al diagnóstico preelectoral y evaluación del impacto de campaña. El caso de las elecciones autonómicas de mayo de 2023. *Colección Cuadernos Metodológicos* vol. 63. Madrid: Centro de Investigaciones Sociológicas

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2023) Motivaciones de voto y estimación electoral en las elecciones generales en España. Un análisis empírico. *Revista Sistema*. 267, 3-37

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2021) *Introducción práctica a la sociología electoral*. Alicante: Obets Ciencia Abierta. ISBN 978-84-124165-4-1. http://hdl.handle.net/10045/119077

Alaminos, Antonio y Alaminos-Fernández, Antonio F^o (2021) *Ajuste funcional y exploración de patrones en series temporales*. Alicante: Obets Ciencia Abierta.

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2016) *La medición de las motivaciones de voto en las elecciones generales del 20 de diciembre de 2015*. Alicante: Obets Ciencia Abierta. Universidad de Alicante, 119 p. http://hdl.handle.net/10045/132686

Alaminos, Antonio y Alaminos-Fernández, Antonio F° (2012) *La medición de las motivaciones de voto en las elecciones generales del 20 de noviembre de 2011*. Alicante: Obets Ciencia Abierta. Universidad de Alicante, 121 p. http://hdl.handle.net/10045/132566

Alaminos, Antonio y Alaminos-Fernández, Paloma (2018) Las dinámicas del voto retrospectivo en España (1996-2017). *Tendencias sociales. Revista de Sociología*, 1: 39-72

Alaminos, Antonio y Tezanos, José Félix (2023) *Nota metodológica estimaciones de voto y escaños. Estudio E3411 preelectoral de elecciones generales.* https://www.cis.es/documents/d/cis/3411_estimacion

Alaminos, Antonio y Tezanos, José Félix (2019) *Nota metodológica estimaciones de voto y escaños. Modelo coyuntura CIS V89. Estudio nº 3261*. Barómetro de septiembre 2019. https://datos.cis.es/pdf/3261_Estimacion.pdf

Alaminos, Antonio y Tezanos, José Félix (2019) *Nota metodológica estimaciones de voto y escaños*. Estudio nº 3263 Macrobarómetro Preelectoral elecciones generales 2019. https://datos.cis.es/pdf/3263_Estimacion.pdf

Alaminos, Antonio y Tezanos, José Félix (2019) *Nota metodológica estimaciones de voto en Comunidades Autónomas y grandes ciudades* Estudio nº 3245 marzo-abril 2019. https://datos.cis.es/pdf/3245_EstimacionEAM.pdf

Alaminos, Antonio y Tezanos, José Félix (2019) *Nota metodológica estimaciones de voto y escaños*. Estudio nº 3242 Macrobarómetro de marzo. Preelectorales elecciones generales 2019. Modelo longitudinal CIS V108. https://www.cis.es/documents/d/cis/IM3242pdf

Alaminos-Fernández, Antonio F° (2023) *Introducción a la teoría de conjuntos difusos y sus aplicaciones en investigación social e IA*. Obets Ciencia Abierta. Alicante: Limencop. ISBN 978-84-09-49456-9. http://hdl.handle.net/10045/132732

Alaminos-Fernández, Antonio F° y Alaminos, Antonio (2023) *Métodos y Modelos para la Predicción Electoral: Una Guía Práctica*. Obets Ciencia Abierta. Alicante: Limencop. ISBN: 978-84-09-50283-7. http://hdl.handle.net/10045/138240

Kahn, H., & Wiener, A. J. (1967). *The Year 2000: A Framework for Speculation on the Next Thirty-Three Years*. Nueva York: Macmillan.

Schwartz, P. (1996). The Art of the Long View: Paths to Strategic Insight for Yourself and Your Company. Nueva York: Doubleday.

Wack, P. (1985). Scenarios: Uncharted Waters Ahead. Harvard Business Review, 63(5), 73-89.

Contenido

Documentación técnica de la estimación electoral	1
1 Modelo analítico	2
1.1 Modelo Bifactorial Inercia Incertidumbre	3
1.2 Orientaciones básicas de análisis	6
2 Análisis distribucional y correlacional de los escenarios	8
Resultados para PSOE	9
Estadísticas Descriptivas para PSOE	9
Resultados para PP	11
Estadísticas Descriptivas para PP	11
Resultados para VOX	13
Estadísticas Descriptivas para VOX	13
Resultados para Podemos	15
Estadísticas Descriptivas para Podemos	15
Resultados para Sumar	17
Estadísticas Descriptivas para Sumar	17
Resultados para SALF	19
Estadísticas Descriptivas para SALF	19
Resultados para CC	21
Estadísticas Descriptivas para CC	21
Resultados para ERC	23
Estadísticas Descriptivas para ERC	23
Resultados para JxCat	25
Estadísticas Descriptivas para JxCat	25
Resultados para BNG	27
Estadísticas Descriptivas para BNG	27
Resultados para UPN	29
Estadísticas Descriptivas para UPN	29
Resultados para EAJ_PNV	
Estadísticas Descriptivas para EAJ_PNV	31
Resultados para EH_Bildu	

	Estadísticas Descriptivas para EH_Bildu	33
	Resultados para Otros	35
	Estadísticas Descriptivas para Otros	35
	Resultados para En_blanco	37
	Estadísticas Descriptivas para En_blanco	37
	Comparación de escenarios entre partidos	38
3.	Análisis de los componentes de inercia e incertidumbre	54
	Gráficos para PSOE	54
	Análisis de Aleatoriedad del Error para PSOE	55
	Análisis de la Dinámica de Inercia Pasada para PSOE	56
	Gráficos para PSOE_pasado	56
	Análisis de Aleatoriedad del Error para PSOE_pasado	57
An	álisis de la Dinámica de Inercia Presente_Futuro para PSOE	58
(Gráficos para PSOE_futuro	58
	Análisis de Aleatoriedad del Error para PSOE_futuro	59
	Gráficos para PP	60
	Análisis de Aleatoriedad del Error para PP	61
	Análisis de la Dinámica de Inercia Pasada para PP	62
(Gráficos para PP_pasado	62
	Análisis de Aleatoriedad del Error para PP_pasado	63
An	álisis de la Dinámica de Inercia Presente_Futuro para PP	64
	Gráficos para PP_futuro	64
	Análisis de Aleatoriedad del Error para PP_futuro	65
(Gráficos para VOX	66
	Análisis de Aleatoriedad del Error para VOX	67
	Análisis de la Dinámica de Inercia Pasada para VOX	68
	Gráficos para VOX_pasado	68
	Análisis de Aleatoriedad del Error para VOX_pasado	69
An	álisis de la Dinámica de Inercia Presente_Futuro para VOX	70
•	Gráficos para VOX_futuro	70
	Análisis de Aleatoriedad del Error para VOX_futuro	71
	Gráficos para Podemos	72

Análisis de Aleatoriedad del Error para Podemos	
Análisis de la Dinámica de Inercia Pasada para Podemos	74
Gráficos para Podemos_pasado	74
Análisis de Aleatoriedad del Error para Podemos_pasado	75
Análisis de la Dinámica de Inercia Presente_Futuro para Podemos	76
Gráficos para Podemos_futuro	76
Análisis de Aleatoriedad del Error para Podemos_futuro	77
Gráficos para Sumar	78
Análisis de Aleatoriedad del Error para Sumar	79
Análisis de la Dinámica de Inercia Pasada para Sumar	80
Gráficos para Sumar_pasado	80
Análisis de Aleatoriedad del Error para Sumar_pasado	81
Análisis de la Dinámica de Inercia Presente_Futuro para Sumar	82
Gráficos para Sumar_futuro	82
Análisis de Aleatoriedad del Error para Sumar_futuro	83
Gráficos para SALF	84
Análisis de Aleatoriedad del Error para SALF	85
Análisis de la Dinámica de Inercia Pasada para SALF	86
Gráficos para SALF_pasado	86
Análisis de Aleatoriedad del Error para SALF_pasado	87
Análisis de la Dinámica de Inercia Presente_Futuro para SALF	88
Gráficos para SALF_futuro	88
Análisis de Aleatoriedad del Error para SALF_futuro	89
Gráficos para CC	90
Análisis de Aleatoriedad del Error para CC	91
Análisis de la Dinámica de Inercia Pasada para CC	92
Gráficos para CC_pasado	92
Análisis de Aleatoriedad del Error para CC_pasado	93
Análisis de la Dinámica de Inercia Presente_Futuro para CC	94
Gráficos para CC_futuro	94
Análisis de Aleatoriedad del Error para CC_futuro	95
Gráficos para ERC	96

Análisis de Aleatoriedad del Error para ERC	97
Análisis de la Dinámica de Inercia Pasada para ERC	98
Gráficos para ERC_pasado	98
Análisis de Aleatoriedad del Error para ERC_pasado	99
Análisis de la Dinámica de Inercia Presente_Futuro para ERC	100
Gráficos para ERC_futuro	100
Análisis de Aleatoriedad del Error para ERC_futuro	101
Gráficos para JxCat	102
Análisis de Aleatoriedad del Error para JxCat	103
Análisis de la Dinámica de Inercia Pasada para JxCat	104
Gráficos para JxCat_pasado	104
Análisis de Aleatoriedad del Error para JxCat_pasado	105
Análisis de la Dinámica de Inercia Presente_Futuro para JxCat	106
Gráficos para JxCat_futuro	106
Análisis de Aleatoriedad del Error para JxCat_futuro	107
Gráficos para BNG	108
Análisis de Aleatoriedad del Error para BNG	109
Análisis de la Dinámica de Inercia Pasada para BNG	110
Gráficos para BNG_pasado	110
Análisis de Aleatoriedad del Error para BNG_pasado	111
Análisis de la Dinámica de Inercia Presente_Futuro para BNG	112
Gráficos para BNG_futuro	112
Análisis de Aleatoriedad del Error para BNG_futuro	113
Gráficos para UPN	114
Análisis de Aleatoriedad del Error para UPN	
Análisis de la Dinámica de Inercia Pasada para UPN	116
Gráficos para UPN_pasado	116
Análisis de Aleatoriedad del Error para UPN_pasado	117
Análisis de la Dinámica de Inercia Presente_Futuro para UPN	118
Gráficos para UPN_futuro	118
Análisis de Aleatoriedad del Error para UPN_futuro	119
Gráficos para EAJ PNV	120

Análisis de Aleatoriedad del Error para EAJ_PNV	121
Análisis de la Dinámica de Inercia Pasada para EAJ_PNV	122
Gráficos para EAJ_PNV_pasado	122
Análisis de Aleatoriedad del Error para EAJ_PNV_pasado	123
Análisis de la Dinámica de Inercia Presente_Futuro para EAJ_PNV	124
Gráficos para EAJ_PNV_futuro	124
Análisis de Aleatoriedad del Error para EAJ_PNV_futuro	125
Gráficos para EH_Bildu	126
Análisis de Aleatoriedad del Error para EH_Bildu	127
Análisis de la Dinámica de Inercia Pasada para EH_Bildu	128
Gráficos para EH_Bildu_pasado	128
Análisis de Aleatoriedad del Error para EH_Bildu_pasado	129
Análisis de la Dinámica de Inercia Presente_Futuro para EH_Bildu	130
Gráficos para EH_Bildu_futuro	130
Análisis de Aleatoriedad del Error para EH_Bildu_futuro	
Gráficos para Otros	
Análisis de Aleatoriedad del Error para Otros	
Análisis de la Dinámica de Inercia Pasada para Otros	134
Gráficos para Otros_pasado	
Análisis de Aleatoriedad del Error para Otros_pasado	
Análisis de la Dinámica de Inercia Presente_Futuro para Otros	
Gráficos para Otros_futuro	136
Análisis de Aleatoriedad del Error para Otros_futuro	137
Gráficos para En_blanco	
Análisis de Aleatoriedad del Error para En_blanco	
Análisis de la Dinámica de Inercia Pasada para En_blanco	
Gráficos para En_blanco_pasado	
Análisis de Aleatoriedad del Error para En_blanco_pasado	
Análisis de la Dinámica de Inercia Presente_Futuro para En_blanco	
Gráficos para En_blanco_futuro	
Análisis de Aleatoriedad del Error para En_blanco_futuro	
Interacción de la estructura de inercia y los patrones de incertidumbre	

Tabla de Coeficiente de Variación (CV)	145
6. Referencias	146